• 제목/요약/키워드: channel barrier

검색결과 214건 처리시간 0.027초

Schottky Barrier MOSFETs with High Current Drivability for Nano-regime Applications

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Choi, Chel-Jong;Kim, Tae-Youb;Park, Byoung-Chul;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권1호
    • /
    • pp.10-15
    • /
    • 2006
  • Various sizes of erbium/platinum silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from $20{\mu}m$ to 10nm. The manufactured SB-MOSFETs show excellent DIBL and subthreshold swing characteristics due to the existence of Schottky barrier between source and channel. It is found that the minimization of trap density between silicide and silicon interface and the reduction of the underlap resistance are the key factors for the improvement of short channel characteristics. The manufactured 10 nm n-type SBMOSFET showed $550{\mu}A/um$ saturation current at $V_{GS}-V_T$ = $V_{DS}$ = 2V condition ($T_{ox}$ = 5nm) with excellent short channel characteristics, which is the highest current level compared with reported data.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.

Cryogenic voltage sampling for arbitrary RF signals transmitted through a 2DEG channel

  • Kim, Min-Sik;Kim, Bum-kyu;Kim, U.J.;Choi, H.K.;Kim, Ju-Jin;Bae, Myung-Ho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권2호
    • /
    • pp.23-26
    • /
    • 2022
  • A lossless transport of an arbitrary waveform in a frequency range of 106-109 Hz through a conduction channel in a cryogenic temperature is of importance for a high-speed operation of quantum device. However, it is hard to use a commercial oscilloscope to directly detect the waveform travelling in a device located in a cryogenic system. Here, we developed a cryogenic voltage sampling technique by using a Schottky barrier gate prepared on a surface of a GaAs/AlGaAs device, which revealed that an incident rectangle waveform can transport through a 1 mm long two-dimensional conduction channel without waveform deformation up to 20 MHz, while further study is needed to increase the detection frequency.

가우스분포를 이용한 이중게이트 MOSFET의 드레인유기장벽감소 분석 (Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET Using Gaussian Distribution)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.325-330
    • /
    • 2012
  • 본 연구에서는 차세대 나노소자인 이중게이트(Double gate; DG) MOSFET에서 발생하는 단채널효과 중 하나인 드레인유기장벽감소(Drain Induced Barrier Lowering; DIBL)에 대하여 분석하였다. 포아송방정식을 풀어 전위분포에 대한 분석학적 해를 구할 때 전하분포함수에 대하여 가우시안 함수를 사용함으로써 보다 실험값에 가깝게 해석하였으며 이때 가우시안 함수의 변수인 이온주입범위 및 분포편차 그리고 소자 파라미터인 채널의 크기, 도핑강도 등에 대하여 드레인유기장벽감소의 변화를 관찰하고자 한다. 본 연구의 모델에 대한 타당성은 이미 기존에 발표된 논문에서 입증하였으므로 본 연구에서는 이 모델을 이용하여 드레인유기장벽감소에 대하여 분석한 결과 드레인유기장벽감소 현상은 채널의 구조 및 도핑강도에 따라 매우 급격히 변화하는 것을 알 수 있었다.

경계요소법을 이용한 간섭형 방음벽의 설계 (Design of Interference Type Noise Barrier Using the BEM)

  • 이상권;이승영
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.831-837
    • /
    • 2003
  • This paper investigates the insertion loss of nosie barrier with a interference device, The efficiency of the conventional interference-type noise barrier depends on specific frequency, Thus this study is performed to improve the efficiency of the nosie barrierin the range of broadband frequency. by changing the shape of interference device and adding the channel with various depths, The boundary element method (BEM) is used to predict the insertion loss of noise barrier. Two-dimensional boundary element model is created to simulate the performance of long barrier with a line source.

경계요소법을 미용한 간섭형 방음벽의 설계 (Design of Interference Type Noise Barrier Using The BEM)

  • Lee, Seung-Young;Lee, Sang-Kwon;Cho, Sung-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.374.2-374
    • /
    • 2002
  • This paper investigates the insertion loss of nosie barrier with a intereference device. The efficiency of the conventional intereference-type noise barrier depends on specific frequency. Thus this study is performed to improve the efficiency of the rosie barrier in the range of broadband frequency, by changing the shape of intereference device and adding the channel with various depths. The boundary element method (BEM) is used to predict the insertion loss of noise barrier. (omitted)

  • PDF

Threshold Voltage Modeling of Double-Gate MOSFETs by Considering Barrier Lowering

  • Choi, Byung-Kil;Park, Ki-Heung;Han, Kyoung-Rok;Kim, Young-Min;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권2호
    • /
    • pp.76-81
    • /
    • 2007
  • Threshold voltage ($V_{th}$) modeling of doublegate (DG) MOSFETs was performed, for the first time, by considering barrier lowering in the short channel devices. As the gate length of DG MOSFETs scales down, the overlapped charge-sharing length ($x_h$) in the channel which is related to the barrier lowering becomes very important. A fitting parameter ${\delta}_w$ was introduced semi-empirically with the fin body width and body doping concentration for higher accuracy. The $V_{th}$ model predicted well the $V_{th}$ behavior with fin body thickness, body doping concentration, and gate length. Our compact model makes an accurate $V_{th}$ prediction of DG devices with the gate length up to 20-nm.

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • 제10권2호
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.

매몰공핍형 MOS 트랜지스터의 3차원 특성 분석 (3-D Characterizing Analysis of Buried-Channel MOSFETs)

  • Kim, M. H.
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 하계학술발표회
    • /
    • pp.162-163
    • /
    • 2000
  • We have observed the short-channel effect, narrow-channel effect and small-geometry effect in terms of a variation of the threshold voltage. For a short-channel effect the threshold voltage was largely determined by the DIBL effect which stimulates more carrier injection in the channel by reducing the potential barrier between the source and channel. The effect becomes more significant for a shorter-channel device. However, the potential, field and current density distributions in the channel along the transverse direction showed a better uniformity for shorter-channel devices under the same voltage conditions. The uniformity of the current density distribution near the drain on the potential minimum point becomes worse with increasing the drain voltage due to the enhanced DIBL effect. This means that considerations for channel-width effect should be given due to the variation of the channel distributions for short-channel devices. For CCDs which are always operated at a pinch-off state the channel uniformity thus becomes significant since they often use a device structure with a channel length of > 4 ${\mu}{\textrm}{m}$ and a very high drain (or diffusion) voltage. (omitted)

  • PDF

A 2-D Model for the Potential Distribution and Threshold Voltage of Fully Depleted Short-Channel Ion-Implanted Silicon MESFET's

  • Jit, S.;Morarka, Saurabh;Mishra, Saurabh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권3호
    • /
    • pp.173-181
    • /
    • 2005
  • A new two dimensional (2-D) model for the potential distribution of fully depleted short-channel ion-implanted silicon MESFET's has been presented in this paper. The solution of the 2-D Poisson's equation has been considered as the superposition of the solutions of 1-D Poisson's equation in the lateral direction and the 2-D homogeneous Laplace equation with suitable boundary conditions. The minimum bottom potential at the interface of the depletion region due to the metal-semiconductor junction at the Schottky gate and depletion region due to the substrate-channel junction has been used to investigate the drain-induced barrier lowering (DIBL) and its effects on the threshold voltage of the device. Numerical results have been presented for the potential distribution and threshold voltage for different parameters such as the channel length, drain-source voltage, and implanted-dose and silicon film thickness.