• Title/Summary/Keyword: change of land use

Search Result 921, Processing Time 0.025 seconds

Analysis on Effect Area of Subway Station Using GIS & Multi-temporal Satellite Images (GIS와 다시기 위성영상을 이용한 전철역세권의 분석)

  • Park, Jae-Kook;Kim, Dong-Moon;Yang, In-Tae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.107-115
    • /
    • 2007
  • Among public transportation facilities within urban area, electric railway (subway) has been a regionally based facility that has played an important role in improving the foundation of territory development and arrangement of living foundation and living environment while supplementing the regional road network. In this regard, the subway stations should be allocated in the right place to ensure mobility, convenience and economic feasibility, some of transportation characteristics of road network combined with the subway. However, it would be very hard to evaluate quantitatively the effects of public transportation facilities such as subway in metropolitan cities on regional development and change in land use and to suggest the data that would be utilized in future city planning corresponding to their results. Therefore, this study evaluated the change in land use by the conditions of location of subway stations quantitatively; then, it evaluated and analyzed the change in land use for the internal and external parts of the surrounding areas of subway stations through the GIS spatial analysis and classification of landsat TM satellite image for utilizing it as reference material for the new establishment of subway stations in the future.

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Effects of CO2 and Climate on water use efficiency and their linkage with the climate change

  • Umair, Muhammad;Kim, Daeun;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.149-149
    • /
    • 2019
  • Gross Primary production (GPP) and evapotranspiration (ET) are the two critical components of carbon and water cycle respectively, linking the terrestrial surface and ecosystem with the atmosphere. The ratio between GPP to ET is called ecosystem water use efficiency (EWUE) and its quantification at the forest site helps to understand the impact of climate change due to large scale anthropogenic activities such as deforestation and irrigation. This study was conducted at the FLUXNET forest site CN-Qia (2003-2005) using Community land model (CLM 5.0). We simulated carbon and water fluxes including GPP, ecosystem respiration (ER), and ET using climatic variables as forcing dataset for 30 years (1981-2010). Model results were validated with the FLUXNET tower observations. The correlation showed better performance with values of 0.65, 0.77, and 0.63 for GPP, ER, and ET, respectively. The model underestimated the results with minimum bias of -0.04, -1.67, and -0.40 for GPP, ER, and ET, respectively. Effect of climate 'CLIM' and '$CO_2$' were analyzed based on EWUE and its trend was evaluated in the study period. The positive trend of EWUE was observed in the whole period from 1981-2010, and the trend showed further increase when simulated with rising $CO_2$. The time period were divided into two parts, from 1981-2000 and from 2001 to 2010, to identify the warming effect on EWUE. The first period showed the similar increasing trend of EWUE, but the second period showed slightly decreasing trend. This might be associated with the increase in ET in the wet temperate forest site due to increase in climate warming. Water use efficiency defined by transpiration (TR) (TWUE), and inherent-TR based WUE (IT-WUE) were also discussed. This research provides the evidence to climate warming and emphasized the importance of long term planning for management of water resources and evaporative demand in irrigation, deforestation and other anthropogenic activities.

  • PDF

Mapping of Areal Evapotranspiration by Remote Sensing and GIS Techniques (RS/GIS수법을 이용한 廣域蒸發散量의 추정)

  • 安忠鉉
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.1
    • /
    • pp.65-80
    • /
    • 1995
  • Remote Sensing data with ancillary ground-based meteorological data provides the capalility of computing threeof the four surface energy balance components(i.e. net radiation, soil heat flux and sensible heat flux) at different spatial and temporal scales. As a result, this enablis the estimation of the remaining term, latent heat flux. One of the practical applications with this approach is to produce evapotranspiration maps over large areas. This results could estimate and reproduce areal evapotranspiration over large area as much as several hundred sequare kilometers. Moreover, some calculating simulations for the effects of the land use change on the surface heat flux has been made by this method, which is able to estimate evapotranspiration under arbitracy presumed condition. From the simulation of land use change, the results suggests that the land use change in study area can be produce the significant changes in surface heat flux. This preliminary research suggests that the future research should involve development of methods to account for the variability of meteorological parameters brought about by changes in surface conditions and improvements in the modeling of sensible heat transfer across the surface atmosphere interface for partical canopy conditions using remote sensing information.

Dynamic Runoff of Non-point Sources Pollutants from Agricultural Areas (농촌지역에서 유출시간에 따른 비점오염물질의 유출평가)

  • Yi, Qitao;Hur, Chinhyu;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.773-783
    • /
    • 2008
  • In this paper, data collected from 22 different rural watersheds during stormflow conditions were analyzed. Those watersheds consisted of forest and cultivated land. EMC data analysis indicates that as agricultural land use increases, EMC values of TSS, COD and TN clearly tends to increase, but TP does not show a significant increase. Pattern of the pollutographs mostly has a similarity in hydrograph shape except nitrogen which inherently shows a variability and complication. The fraction of soluble reactive-P to TP increases as cultivated land use increases while mobile-nitrogen portion was higher in the runoff from forested watersheds than agricultural areas. During stormflow, pollutograph of the nitrogen was determined mainly by change in Particle-TKN as other pollutants but its effect is thought to be masked by decrease of dissolved form of nitrogen due to the dilution.

Analysis of Hydrological Impact Using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam Watershed (CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Bae, Deg-Hyo;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.453-466
    • /
    • 2006
  • The objective of this study was to analyze the changes in the hydrological environment in Soyanggang-dam watershed due to climate change results (in yews 2050 and 2100) which were simulated using CCCma CGCM2 based on SRES A2 and B2. The SRES A2 and B2 were used to estimate NDVI values for selected land use using the relation of NDVI-Temperature using linear regression of observed data (in years 1998$\sim$2002). Land use change based on SRES A2 and B2 was estimated every 5- and 10-year period using the CA-Markov technique based on the 1985, 1990, 1995 and 2000 land cover map classified by Landsat TM satellite images. As a result, the trend in land use change in each land class was reflected. When land use changes in years 2050 and 2100 were simulated using the CA-Markov method, the forest class area declined while the urban, bareground and grassland classes increased. When simulation was done further for future scenarios, the transition change converged and no increasing trend was reflected. The impact assessment of evapotranspiration was conducted by comparing the observed data with the computed results based on three cases supposition scenarios of meteorological data (temperature, global radiation and wind speed) using the FAO Penman-Monteith method. The results showed that the runoff was reduced by about 50% compared with the present hydrologic condition when each SRES and periods were compared. If there was no land use change, the runoff would decline further to about 3$\sim$5%.

A Study on Extracting the Landuse Change Information of Seoul Using LANDSAT(MSS, TM) Data (1972~1985) (LANDAST(MSS, TM) Data를 이용(利用)한 서울시(市)의 토지이용(土地利用) 경년변화(經年變化)의 추출(抽出)에 관한 연구(硏究) (1972~1985년))

  • Ahn, Chul Ho;Ahn, Ki Won;Kim, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.113-124
    • /
    • 1989
  • In this study, we tried to extract the land-use change information of Seoul city using the multiple date images of the same geographic area. Multiple date image set is MSS('72, '79, '81, '93) and TM('85), and we carried out geometric correction, digitizing(due to the administrative boundary) in pre-processing process. In addition, we performed land-use classification with MLC(Maximum Likelihood Classifier) after improving the predictive accuracy of classification by filtering technique. At the stage of classification, ground truth data, topographic maps, aerial photographs were used to select the training field and statistical data of that time were compared with the classification result to prove the accuracy. As a result, urban area in Seoul has been increased('72 : 25.8 %${\rightarrow}$'81 : 43.0 %${\rightarrow}$'85 : 51.9 %) and Forest area decreased ('72 : 39.0 %${\rightarrow}$'85 : 28.4 %) as we estimated. Finally, it is concluded that the utilzation of satellite imagery is very effective, economical and helpful in the urban land-use/land-cover monitoring.

  • PDF

Change of the Land Use in Yanji city of China in the Connection with Urbanization Process (도시화에 따른 중국 연길시 토지이용의 변화)

  • Li, Mingyu
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.2
    • /
    • pp.323-337
    • /
    • 2006
  • This thesis aims to study Change of the Land Use in Yanji city since the reformation and opening of China in the Connection with Urbanization Process. This study is based on Landsat image and maps and data related to topography, urban planning basic, the cadastral map were employed. Softwares such as Arcview3.3, ArcGis8.0 were used. The result of the research is as follows. It clearly appears that there have decreased in the ratio of agricultural areas since the increase in other urban usage of land. There has greatly increased in residential, commercial and industrial areas. Such as the capitalist and market economic city the highest point of city land price emerged in downtown of the old city center. In addition spatial pattern of land price is unusually quite different from the western city in its pattern of land price surface declining tendency between the highest land price and the lowest land price. The land price surface shows irregular patterns with increase of distance from downtown due to various urban developments. According to the land price distribution map, it is possible to guess spatial development of the city that the north-eastern part of Yanji was developed prior to south-western area. The center of the city, or downtown expanded to eastward, and the city expanded to south-westward out skirt. Along the main road, Xin-xing areas developed toward east and west ward.

  • PDF

The Study on the Relationship between Land Use and Groundwater Quality in the Rapidly Urbanized Area (도시화가 빠르게 진행된 지역의 토지이용과 지하수 수질과의 관계에 대한 연구)

  • An, Jung-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.97-108
    • /
    • 2002
  • The use of land at the time of investigation of groundwater quality in the rapidly urbanized Bu-chon city is classified into 5 categories based on the change process of land use. The difference in groundwater quality according to the land use and its usage period is tested by non-parametric statistical procedures. The seven constituents of water quality with the highly frequent detection in the area for this study are used for the statistical test. The shallow groundwater quality within the areas of the same land use at the time of investigation varies significantly according to the period of land usage. The concentration of KMnO$_4$consumed and hardness is significantly higher in the old residential area (of more than 20 years old) than in the younger one (of less than 10 years old). The quality of the shallow groundwater is also significantly different among the three categories with the similar period of land usage (of more than 15 years old). The concentration of No$_3$-N, hardness and total solid is significantly higher in the residential area than in the agricultural one (namely, the area used as paddy fields 2 to 5 years ago). The median concentration of these constituents is 2.2 to 3.8 times higher in the residential area than in the agricultural one. The concentration of NO$_3$-N, KMnO$_4$, consumed and Cl is significantly higher in the industrial area than in the agricultural one. The median concentration of these constituents is 5.5 to 18 times higher in the industrial area than in the agricultural one. The concentration of KMnO$_4$consumed is significantly higher in the industrial area than in the residential area. The median concentration of these constituents is 12 times higher in the industrial area than in the residential one. The spatial distribution of shallow groundwater quality in the rapidly urbanized area is closely related to the period of land usage as well as the land use, which is presumed to be attributed to the difference in the concentration and leakage rate of the contaminants leaking from damaged sewer into shallow groundwater.

Influence of New Town Development on the Urban Heat Islands - ln the Case of Pan-Gyo Area and Bun-Dang New Town - (신도시 개발이 도시열섬 형성에 미치는 영향 - 분당신도시와 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.37-46
    • /
    • 2002
  • The main purpose of this research is to discuss the urban heat island which will be caused by urbanization, especially by the construction of new town on a wide green zone. Over the last ten years, five new towns have been developed around the Seoul metropolitan area. However these new towns become bedroom communities and create traffic problems between Seoul and its surrounding areas because of an increase in population and a lack of roads and other infrastructures. The construction of another such new town is under consideration in the Pan-gyo area. But it is important that Pan-gyo remains a wide green zone. Many studies show that green space can play an important role in improving urban eco-meteorological, ameliorative capability and air hygiene. The objective of this study is to analyze the urban heat islands of Bund-Dang Si which was constructed in 1996 and of the Pan-Gyo area planned as new town. To investigate the local thermal environment and its negative effects caused by change of the land use type and urbanization we used LANDSAT TM images for extraction of urban surface temperature according to change of land use over 15 years. These data were analyzed together with digital land use and topographic data. As a study result, we found that the thermal island of this area from 1985 to 1999 rapidly increased with a difference of mean temperature of more than 12'E. Before construction of Bun-Dang Si the temperature of this area was the same as the forest, but during the new town construction in 1991, an urban heat island developed. The temperature of forest with a size of over 50% of the investigation area was lowest, which leads us to conclude that the forest cools the urban and its surroundings. The mean temperature of the residential and commercial area is more than +4.5$^{\circ}C$ higher then forest, so this method of land use is the main factor increasing the urban heat island. Urban heat islands and green space play an important role in urban wind systems, i.e. Thermal Induced Air Exchange and Structural Wind Circulation, because of their special properties with regard to energy balance between constructed urban and land. The skill to allocate land use types in urban areas is a very important planning device to reduce air pollution and induce the fresh cold air from green space. An urban climatic experiment featuring a numerical wind simulation study to show the air corridor will be published in a following research paper.