• Title/Summary/Keyword: ceramic operation

Search Result 228, Processing Time 0.021 seconds

Quantitative Analysis of Mineral Composition in Porland Cement Clinker by X-ray Diffraction (포틀랜드 시멘트 클린커 광물조성의 X선구절에 의한 정량분석)

  • Chang, Se-Kyung;Rhee, Jhun;Han, Ki-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.2
    • /
    • pp.64-70
    • /
    • 1986
  • In this investigation x-ray diffraction method was mainly studied for quantitative analysis of clinker mineral composition. And also optical microscopic observation and Bogue calculation method were applied to compare with the x-ray diffraction method. In the procedure of x-ray diffraction analysis graphite monochromator automatic divergence slit and spinner for sample holder were used for minimizing the error due to the operation of the equipment. Especially the separation of overlapped peaks were proceeded by micro-processor automatically. The results of x-ray diffraction method for synthesized clinker were consistent with the Bogue value and the results of optical microscopic observation. However the results of quantitative analysis of mineral composition or commercial clinker containing solid solution of minor component were different from the Bogue value. On the other hand they agreed reasonably well with results of the optical mic-roscopic observation.

  • PDF

Numerical Study of Premixed Combustion within a Porous Ceramic Burner of Different Ceramic Properties (서로 다른 물성치로 이루어진 다공 세라믹 연소기 속에서의 예혼합화염 연소에 대한 수치해석 연구)

  • Lim, In-Gweon
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • Premixed combustion within porous ceramic media is numerically studied to understand burning characteristics and to find best configurations for burner implementations. Among many parameters, critical to burner performance, flame location and extinction coefficient are selected as major parameters for this study. The flame structure and burner performance with respect to these two parameters are observed. In the study, it is found that the location of flame is the most important in porous burner operation since it affects the rate of heat transfer and flame structure. Stability of the flame within the porous ceramic burner is discussed with respect to the flame location. It is found that to obtain high radiative output, the flame should be located downstream section of the burner. But the flame is to be unstable at most of downstream section except near the exit plane. To overcome this problem, new porous ceramic burner, using different ceramic properties in one burner instead of single property ceramic, is made and tested. With a combination of ceramics of high extinction coefficient at upstream and another material of low extinction coefficient at downstream of the burner, the flame can be stabilized at wider region of the burner with higher radiative output compared to the original burner configuration.

  • PDF

Self-Powered Integrated Sensor Module for Monitoring the Real-Time Operation of Rotating Devices (회전기기 실시간 동작상태 모니터링을 위한 자가발전 기반 센서모듈)

  • Kim, Chang Il;Yeo, Seo-Yeong;Park, Buem-Keun;Jeong, Young-Hun;Paik, Jong Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.311-317
    • /
    • 2019
  • Rotating devices are commonly installed in power plants and factories. This study proposes a self-powered sensor node that is powered by converting the vibration energy of a rotating device into electrical energy. The self-powered sensor consists of a piezoelectric harvester for self-power generation, a rectifier circuit to rectify the AC signal, a sensor unit for measuring the vibration frequency, and a circuit to control the light emitting diode (LED) lighting. The frequency of the vibration source was measured using a piezoelectric-cantilever-type vibration frequency sensor. A green LED was illuminated when the measured frequency was within the normal range. The power generated by the piezoelectric harvester was determined, and the LED operation was assessed in terms of the vibration frequency. The piezoelectric harvester was found to generate a power of 3.061 mW or greater at a vibration acceleration of 1.2 g ($1g=9.8m/s^2$) and vibration frequencies between 117 and 123 Hz. Notably, the power generated was 4.099 mW at 122 Hz. As such, our self-powered sensor node can be used as a module for monitoring rotating devices, because it can convert vibration energy into electrical energy when installed on rotating devices such as air compressors.

Viscosity Sensor Using Piezoelectric Ceramic Resonators (압전 세라믹 공진자를 이용한 점도 센서)

  • Ok, Yun-Po;Kang, Jin-Kyu;Hong, Chang-Hyo;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.361-365
    • /
    • 2012
  • A bolt-clamped ultrasonic viscometer was designed and fabricated using a pair of ring-shaped piezoelectric ceramic resonators. For its compactness and low operation frequencies, simulation of piezoelectric resonators was carried out using an ATILA program. Ring-shaped resonators using $0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.95Pb(Zr_{0.475}Ti_{0.525})O_3$ ceramics were prepared by a conventional ceramic processing, which were then clamped with a pair of metal caps. The fabricated sensor module with a small volume of less than 1 $cm^3$ and an operation frequency as low as 26.5 kHz showed a good relationship between its quality factor and the viscosity of oil.

Oily Wastewater Treatment by Ceramic Membrane: A Review (세라믹 멤브레인을 통한 함유폐수의 처리: 리뷰)

  • Kwak, Yeonsoo;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.265-274
    • /
    • 2022
  • Separation of oily wastewater, which is a byproduct of various industries such as petroleum refineries, is essential to not exceed the tolerance limit of wastewater streams. Ceramic membranes show potential in oily wastewater separation, due to their excellent oil removal efficiency, good chemical, thermal, and mechanical stability, and simple operation. However, widespread application of ceramic membranes is limited due to high material cost of alumina, silica, and other ceramic based materials used to fabricate them. Recent efforts to reduce material cost have been made, using fly ash and clay. This review examines the fabrication and efficiency of ceramic membranes in oily wastewater separation according to material: silica, alumina, and waste ash.

Fabrication of Ceramic Gas Sensors at Room Temperature and Characteristics (실온동작 세라믹 가스센서의 제작 및 특성)

  • Jung, Jae-Eop;Yoon, Yeu-Kyung;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.814-817
    • /
    • 2003
  • As additive Pt of a little to $SnO_2$ that gas sensing property is superior oxide-semiconductor material to fabricate gas sensor that operation is possible at room temperature and fabricated ceramic gas sensing devices. And, the change amount and sintering temperature of addition material investigated gas sensitivity by change of operation temperature, humidity relativity, Long-term stability and hysteresis. And achieved SEM and XRD analysis for characteristics searching examination of devices.

  • PDF

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

Removal of Inclusions in molten Steel by Filter Dam (필터댐에 의한 강중 개재물 저감효과)

  • 조문규;이석근;정두화;남수희;이재우
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.201-207
    • /
    • 1998
  • A tube-type filter dam(or baffle with holes) for ferrous melt refining is applied to the tundish operation for molten steel having low carbon and ultra-low carbon. The changes in the total oxygen content insoluble aluminum content and the distribution of inclusion size in molten steel during tundish operation were in-vestigated at the pouring part strand and mold of tundish. Removal mechanism of inclusions is considered to be caused by buoyancy action of the filter dam better than filtration action and the size range of in-clusions filtrated by the filter dam was for 30-50$\mu\textrm{m}$. Decrease in deviation of inclusion content in molten steel was confirmed for appling the filter dam in comparison with using conventional dam and weir. Also the filter dam had the advantage of baffle with holes at lower part in the efficiency of inclusions removal.

  • PDF

The Removal of Inclusions in Molten Steel by Coating Materials for Tundish (턴디쉬용 코팅재에 의한 강중 개재물 저감효과)

  • 조문규;이석근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • A MgO-CaO-based coating material for ferrous melt refining is applied to the tundish operation for mol-ten steel having low carbon. The changes in the total oxygen content insoluble aluminum content and the content of inclusions in molten steel during tundish operation were measured at the pouring part strand of tundish and mold. On the basis of the experimental results the interfacial reaction occurring between the coating materials and the molten steel in tundish was discussed and compared with the theoretical con-sideration. It is concluded that interfacial reaction is not active at the strand part of tundish but is active at the pouring part because of the turbulent flow in the molten steel.

  • PDF

Fuel Cells for Intermediate Temperature Operations (저온 작동 박막 고체산화물 연료전지)

  • Shim, Joon-H.;Cha, Suk-Won;Gur, Turgut M.;Prinz Fritz B.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.751-757
    • /
    • 2006
  • Recently, a new type of solid oxide fuel cells has been developed employing extremely thin oxide electrolyte. These fuel cells are expected to operate at significantly reduced temperature compared to conventional solid oxide fuel cells. Accordingly, they may resolve the stability and material selection issues of high temperature fuel cells. Furthermore, they may eliminate the limitations of polymer membrane fuel cells whose operation temperature is under $100^{\circ}C$. In this paper, we review the electrolytes for intermediate temperature operation. Then, we discuss the current development of thin film solid oxide fuel cells that possibly operated at low temperatures.