Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.5.361

Viscosity Sensor Using Piezoelectric Ceramic Resonators  

Ok, Yun-Po (Korea Electrotechnology Research Center, Battery Research Center)
Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan)
Hong, Chang-Hyo (School of Materials Science and Engineering, University of Ulsan)
Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.5, 2012 , pp. 361-365 More about this Journal
Abstract
A bolt-clamped ultrasonic viscometer was designed and fabricated using a pair of ring-shaped piezoelectric ceramic resonators. For its compactness and low operation frequencies, simulation of piezoelectric resonators was carried out using an ATILA program. Ring-shaped resonators using $0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.95Pb(Zr_{0.475}Ti_{0.525})O_3$ ceramics were prepared by a conventional ceramic processing, which were then clamped with a pair of metal caps. The fabricated sensor module with a small volume of less than 1 $cm^3$ and an operation frequency as low as 26.5 kHz showed a good relationship between its quality factor and the viscosity of oil.
Keywords
Ultrasonic sensor; Viscometer; Engine oil management; Piezoelectric ceramics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, and S. S. Wang, SAE Technical Paper Series, 70847 (2000).
2 B. Jakoby, M. Buskies, M. Scherer, S. Henzler, H. Eisenschmid, and O. Schatz, in Advanced Microsystems for Automotive Applications (Springer, Berlin, 2001) p. 157.
3 A. Agoston, C. Otsch, and B. Jakoby, Sensor. Actuat., A121, 327 (2005).
4 L. V. Markova, N. K. Myshkin, H. Kong, and H. G. Han, Tribology International, 44, 963 (2011).   DOI   ScienceOn
5 K. Zhang, S. H. Choy, L. Zhao, H. Luo, H. L. W. Chan, and Y. Wang, Microelectron. Eng., 88, 1028 (2011).   DOI   ScienceOn
6 Z. G. Zhu, B. S. Li, G. R. Li, W. Z. Zhang, and Q. R. Yin, Mater. Sci. Eng., B117, 216 (2005).
7 J. H. Hu, H. L. Li, H. L. W. Chan, and C. L Choy, Sensor. Actuat., A88, 79 (2001).
8 H. L. Li, J. H. Hu, and H. L. W. Chan, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51, 1247 (2004).   DOI
9 D. A. Buttrry and M. D. Ward, Chem. Rev., 92, 1355 (1992).   DOI
10 S. J. Martin, G. C. Frye, and K. O. Wessendorf, Sensor. Actuat., A44, 209 (1994).
11 P. J. Gilinson Jr., C. R. Dauwalter, and E. W. Merrill, Trans. Soc. Rheol., 7, 319 (1963).   DOI
12 S. H. Maron, I. M. Krieger, and A. W. Sisko, J. Appl. Phys., 25, 971 (1954).   DOI
13 W. P. Mason, W. O. Baker, H. J. McSkimin, and J. H. Heiss, Phys. Rev., 75, 936 (1949).   DOI
14 E. Irion, K. Land, T. Gürtler, and M. Klein, SAE Technical Paper Series, 106, 1390 (1997).