DOI QR코드

DOI QR Code

Self-Powered Integrated Sensor Module for Monitoring the Real-Time Operation of Rotating Devices

회전기기 실시간 동작상태 모니터링을 위한 자가발전 기반 센서모듈

  • Kim, Chang Il (Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Yeo, Seo-Yeong (Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Park, Buem-Keun (Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeong, Young-Hun (Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Paik, Jong Hoo (Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology)
  • 김창일 (한국세라믹기술원전자융합본부) ;
  • 여서영 (한국세라믹기술원전자융합본부) ;
  • 박범근 (한국세라믹기술원전자융합본부) ;
  • 정영훈 (한국세라믹기술원전자융합본부) ;
  • 백종후 (한국세라믹기술원전자융합본부)
  • Received : 2019.09.16
  • Accepted : 2019.09.27
  • Published : 2019.09.30

Abstract

Rotating devices are commonly installed in power plants and factories. This study proposes a self-powered sensor node that is powered by converting the vibration energy of a rotating device into electrical energy. The self-powered sensor consists of a piezoelectric harvester for self-power generation, a rectifier circuit to rectify the AC signal, a sensor unit for measuring the vibration frequency, and a circuit to control the light emitting diode (LED) lighting. The frequency of the vibration source was measured using a piezoelectric-cantilever-type vibration frequency sensor. A green LED was illuminated when the measured frequency was within the normal range. The power generated by the piezoelectric harvester was determined, and the LED operation was assessed in terms of the vibration frequency. The piezoelectric harvester was found to generate a power of 3.061 mW or greater at a vibration acceleration of 1.2 g ($1g=9.8m/s^2$) and vibration frequencies between 117 and 123 Hz. Notably, the power generated was 4.099 mW at 122 Hz. As such, our self-powered sensor node can be used as a module for monitoring rotating devices, because it can convert vibration energy into electrical energy when installed on rotating devices such as air compressors.

Keywords

References

  1. S. Priya and D. J. Inman, Energy Harvesting Technologies, Springer, New York, pp. 3-39, 2009.
  2. S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., Vol. 26, No. 11, pp. 1131-1144, 2003. https://doi.org/10.1016/S0140-3664(02)00248-7
  3. C. I. Kim, Y. H. Jeong, W. I. Park, J. H. Cho, Y. H. Jang, B. J. Choi, S. S. Park, and J. H. Paik, "Development and Evaluation of Rack Type Piezoelectric Harvester for Smart Street Lamps Control", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 29, No. 11, pp. 696-701, 2016. https://doi.org/10.4313/JKEM.2016.29.11.696
  4. C. I. Kim, Y. H. Jeong, J. S. Yun, Y. W. Hong, Y. H. Jang, B. J. Choi, S. S. Park, C. M. Son, D. K. Seo, and J. H. Paik, "Development and Evaluation of Self-powered Energy Harvester in Wireless Sensor Node for Diagnosis of Electric Power System", J. Sens. Sci. Technol., Vol. 25, No. 5, pp. 371-376, 2016. https://doi.org/10.5369/JSST.2016.25.5.371
  5. W. Wu, Y. Chen, B. Lee, J. He, and Y. Peng, "Tunable resonant frequency power harvesting devices", Proc SPIE, Vol. 6169, pp. 61690A, 2006.
  6. E. S. Leland and P. K. Wright, "Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload", Smart Mater Struct, Vol. 15, No. 5, pp. 1413-1420, 2006. https://doi.org/10.1088/0964-1726/15/5/030
  7. Y. Hu, H. and Xue, H. Hu, "A piezoelectric power harvester with adjustable frequency through axial preloads", Smart Mater Struct, Vol. 16, No. 5, pp. 1961-1966, 2007. https://doi.org/10.1088/0964-1726/16/5/054
  8. C. Eichhorn, F. Goldschmidtboeing, and P. Woias, "A frequency tunable piezoelectric energy converter based on a cantilever beam", In: Proceedings of PowerMEMS, pp. 309-312, 2008.
  9. T. Reissman, E. M. Wolff, and E. Garcia, "Piezoelectric resonance shifting using tunable nonlinear stiffness", Proc SPIE 7288, 72880G, 2009.
  10. C. I. Kim, Y. H. Jeong, J. S. Yun, Y. W. Hong, Y. H. Jang, B. J. Choi, S. S. Park, C. M. Son, D. K. Seo, and J. H. Paik, "Development and evaluation of self-powered energh harvester in wireless sensor node for diagnosis of electric power system", J. Sens. Sci. Technol., Vol. 25, No. 5, pp. 371-376, 2016. https://doi.org/10.5369/JSST.2016.25.5.371
  11. C. I. Kim, J. H. Lee, K. B. Kim, Y. H. Jeong, J. H. Cho, J. H. Paik, Y. J. Lee, and S. Nahm, "Design and electrical properties of piezoelectric energy harvester for roadway", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 24, No. 7, pp. 554-558, 2011. https://doi.org/10.4313/JKEM.2011.24.7.554
  12. C. I. Kim, K. B. Kim, J. H. Jeon, Y. H. Jeong, J. H. Cho, J. H. Paik, I. S. Kang, M. Y. Lee, B. J. Choi, Y. B. Cho, S. S. Park, S. Nahm, and Y. J. Lee, "Development and evaluation of the road energy harvester using piezoelectric cantilevers", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 25, No. 7, pp. 511-515, 2012. https://doi.org/10.4313/JKEM.2012.25.7.511
  13. C. I. Kim, K. B. Kim, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, I. S. Kang, M. Y. Lee, B. J. Choi, S. S. Park, Y. B. Cho, and S. Nahm, "Development and evaluation of the road energy harvester according to piezoelectric cantilever structure and vehicle load transfer mechanism", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 25, No. 10, pp. 773-778, 2012. https://doi.org/10.4313/JKEM.2012.25.10.773
  14. C. I. Kim, Y. H. Jeong, J. S. Yun, J. H. Cho, J. H. Paik, Y. H. Jang, B. J. Choi, S. S. Park, and Y. B. Cho, "Development and evaluation of the bender type piezoelectric energy harvester according to installation methods and vehicle weight", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 29, No. 5, pp. 274-278, 2016. https://doi.org/10.4313/JKEM.2016.29.5.274
  15. J. H. Ryu, J. E. Kang, Y. Zhou, S. Y. Choi, W. Ha. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, Y. D. Kim, S. Priya, S. Y. Lee, S. S. Jeong, and D. Y. Jeong, "Ubiquitous magneto-mechano-electric generator", Energy. Environ, Sci., Vol. 8, No. 8, pp. 2402-2408, 2015. https://doi.org/10.1039/C5EE00414D
  16. V. Annapureddy, M. S. Kim, P. Haribabu, H. Y. Lee, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, D. Y. Jeong, and J. H. Ryu, "Low-loss piezoelectric single-crystal fibers for enhanced magnetic energy harvesting with magnetoelectric composite", Adv. Energy Mater., Vol. 6, No. 24, pp. 1601244, 2016. https://doi.org/10.1002/aenm.201601244
  17. M. Ferrari, V. Ferrari, M. Guizzetti, B. Ando, S. Baglio, and C. Trigona, "Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters", Sens Actuators A, Vol. 162, No. 2, pp. 425-431, 2010. https://doi.org/10.1016/j.sna.2010.05.022
  18. I. H. Kim, H. J. Jung, B. M. Lee, and S. J. Jang, "Broadband energy-harvesting using a two degreeof-freedom vibrating body", Appl Phys Lett., Vol. 98, No. 21, pp. 214102, 2011. https://doi.org/10.1063/1.3595278
  19. A. Hajati and S. G. Kim, "Ultra-wide bandwidth piezoelectric energy harvesting", Appl Phys Lett., Vol. 99, No. 8, pp. 083105, 2011. https://doi.org/10.1063/1.3629551
  20. P. Pillatsch, L. M. Miller, E. Halvorsen, P. K. Wright, E. M. Yeatman and A. S. Holmes, "Self-tuning behavior of a clamped-clamped beam with sliding proof mass for broadband energy harvesting", J Physics : Conference Series, Vol. 476, pp. 1-5, 2013.
  21. N. Aboulfotoh, J. Twiefel, M. Krack, and J. Wallaschek, "Experimental study on performance enhancement of a piezoelectric vibration energy harvester by applying self-resonating behavior", Energy Harvesting and Systems, Vol. 4, No. 3, pp. 131-136, 2017. https://doi.org/10.1515/ehs-2016-0027