Browse > Article
http://dx.doi.org/10.4191/KCERS.2006.43.12.751

Fuel Cells for Intermediate Temperature Operations  

Shim, Joon-H. (Department of Mechanical Engineering, Stanford University)
Cha, Suk-Won (School of Mechanical and Aerospace Engineering, Seoul National University)
Gur, Turgut M. (Department of Mechanical Engineering, Stanford University)
Prinz Fritz B. (Department of Mechanical Engineering, Stanford University)
Publication Information
Abstract
Recently, a new type of solid oxide fuel cells has been developed employing extremely thin oxide electrolyte. These fuel cells are expected to operate at significantly reduced temperature compared to conventional solid oxide fuel cells. Accordingly, they may resolve the stability and material selection issues of high temperature fuel cells. Furthermore, they may eliminate the limitations of polymer membrane fuel cells whose operation temperature is under $100^{\circ}C$. In this paper, we review the electrolytes for intermediate temperature operation. Then, we discuss the current development of thin film solid oxide fuel cells that possibly operated at low temperatures.
Keywords
Solid oxide fuel cells; Thin film electrolyte; Micro fuel cells; Microfabrication;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. O'Hayre, S. W. Cha, W. Colella, and F. B. Prinz, 'Fuel Cell Fundamentals,' pp. 112, John Wiley and Sons, New York, 2006
2 T. A. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, and S. Gottesfeld, 'Water Uptake by and Transport through Nafion(R) 117 Membranes,' J. Electrochem. Soc., 140 [4] 1041-47 (1993)   DOI
3 C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, 'Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells,' J. Power Sources, 103 [1] 1-9 (2001)   DOI   ScienceOn
4 N. M. Markovic, T. J. Schmidt, V. Stamenkovic, and P. N. Ross, 'Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review,' Fuel Cells, 1 [2] 105-16 (2001)   DOI
5 R. Ianniello, V. M. Schmidt, U. Stimming, J. Stumper, and A. Wallau, 'CO Adsorption and Oxidation on Pt and Pt-Ru Alloys: Dependence on Substrate Composition,' Electrochim. Acta, 39 [11-12] 1863-69 (1994)   DOI   ScienceOn
6 K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, 'Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Ooperation at 80- $140^{\circ}C$,' J. Electrochem. Soc., 149 [3] A256-61 (2002)   DOI   ScienceOn
7 J. J. Fontanella, C. A. Edmondson, M. C. Wintersgill, Y. Wu, and S. G. Greenbaum, 'High-Pressure Electrical Conductivity and NMR Studies in Variable Equivalent Weight NAFION$^{\circledR}$ Membranes,' Macromolecules, 29 [14] 4944-51 (1996)   DOI   ScienceOn
8 R. H. He, Q. F. Li, G. Xiao, and N. J. Bjerrum, 'Proton Conductivity of Phosphoric Acid Doped Polybenzimidazole and Its Composites with Inorganic Proton Conductors,' J. Membr. Sci., 226 [1-2] 169-84 (2003)   DOI   ScienceOn
9 R. He, Q. Li, J. Gao, J. O. Jensen, and N. J. Bjerrum, 'The CO Poisoning Effect in PEMFCs Operational at Temper atures up to 200$^{\circ}$C,' J. Electrochem. Soc., 150 [12] A1599-1605 (2003)   DOI   ScienceOn
10 H. F. Oetjen, V. M. Schmidt, U. Stimming, and F. Trila, 'Performance Data of a Proton Exchange Membrane Fuel Cell Using $H_2/CO$ as Fuel Gas,' J. Electrochem. Soc., 143 [12] 3838-42 (1996)   DOI
11 H. Pu, W. H. Meyer, and G. Wegner, 'Proton Transport in Polybenzimidazole Blended with $H_3PO_4\; or\; H_2SO_4$,' J. Polym. Sci., 40 [7] 663-69 (2002)   DOI   ScienceOn
12 K. T. Adjemian, R. Dominey, L. Krishnan, H. Ota, P. Majsztrik, T. Zhang, J. Mann, B. Kirby, L. Gatto, M. Velo- Simpson, J. Leahy, S. Srimvasan, J. B. Benziger, and A. B. Bocarsly, 'Function and Characterization of Metal Oxide- Nafion Composite Membranes for Elevated-Temperature $H_2/O_2$ PEM Fuel Cells,' Chem. Mat., 18 [9] 2238-48 (2006)   DOI   ScienceOn
13 Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, and S. Nomura, 'Family of High-Temperature Polymer-Electrolyte Membranes Synthesized from Amphiphilic Nanostructured Macromolecules,' J. Electrochem. Soc., 150 [5] A616-9 (2003)   DOI   ScienceOn
14 R. Bouchet, S. Miller, M. Duclot, and J. L. Souquet, 'A Thermodynamic Approach to Proton Conductivity in Acid- Doped Polybenzimidazole,' Solid State Ionics, 145 [1-4] 69-78 (2001)   DOI   ScienceOn
15 R. He, Q. Li, J. O. Jensen, and N. J. Bjerrum, 'PBI-Based Polymer Membranes for High Temperature Fuel Cells- Preparation, Characterization and Fuel Cell Demonstration,' Fuel Cells, 4 [3] 147-59 (2004)   DOI   ScienceOn
16 R. K. A. M. Mallant, 'PEMFC Systems: The Need For High Temperature Polymers as a Consequence of PEMFC Water and Heat Management,' J. Power Sources, 118 [1-2] 424-29 (2003)   DOI   ScienceOn
17 D. A. Boysen, C. R. I. Chisholm, S. M. Haile, and S. R. Narayanan, 'Polymer Solid Acid Composite Membranes for Fuel-Cell Applications,' J. Electrochem. Soc., 147 [10] 3610- 13 (2000)   DOI   ScienceOn
18 J. J. Fontanella, M. C. Wintersgill, R. S. Chen, Y. Wu, and S. G. Greenbaum, 'Charge Transport and Water Molecular Motion in Variable Molecular Weight NAFION$^{\circledR}$ Membranes: High Pressure Electrical Conductivity and NMR,' Electrochim. Acta, 40 [13-14] 2321-26 (1995)   DOI   ScienceOn
19 K. D. Kreuer, 'Proton-Conducting Oxides,' Ann. Rev. Mat. Res., 33 333-59 (2003)   DOI   ScienceOn
20 T. Uda, P. Babilo, and S. M. Haile, 'Thermodynamic Analysis and Conductivity of Yttrium Doped Barium Zirconate,' 207th Meeting of the Electrochemical Society, Quebec, Canada 2005
21 H. Taherparvara, J. A. Kilnera, R. T. Baker, and M. Sahibzada, 'Effect of Humidification at Anode and Cathode in Proton-Conducting SOFCs,' Solid State Ionics, 162 297- 303 (2003)   DOI   ScienceOn
22 J. Cheng, K. Crabb, R. Pornprasertsuk, H. Huang, Y. Saito, and F. B. Prinz, 'Ion Irradiation Effects on Yttria-Stabilized Zirconia Conductivity,' Materials Research Society Symposium, Boston, USA, Nov 2006
23 R. Pornprasertsuk, J. Cheng, Y. Saito, T. M. Gur, and F. B. Prinz, 'Quantum Simulation and Isotope Exchange Depth Profiling Studies of Irradiated Yttria Stabilized Zirconia,' 208th Meeting of The Electrochemical Society, Los Angeles, USA, Oct 2005
24 R. B. Merle, C. R. I. Chisholm, D. A. Boysen, and S. M. Haile, 'Instability of Sulfate and Selenate Solid Acids in Fuel Cell Environments,' Energy and Fuels, 17 [1] 210-15 (2003)   DOI   ScienceOn
25 T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, 'Comparative Study of Water Uptake by and Transport through Ionomeric Fuel Cell Membranes,' J. Electrochem. Soc., 140 [7] 1981-85 (1993)   DOI
26 S. J. Paddison, 'Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid-Based Polymer Electrolyte Membranes,' Ann. Rev. Mat. Res., 33 289-319 (2003)   DOI   ScienceOn
27 K. D. Kreuer, 'On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells,' J. Membr. Sci., 185 [1] 29-39 (2001)   DOI   ScienceOn
28 Z. Weber and J. Newman, 'Transport in Polymer-Electrolyte Membranes. I. Physical Model,' J. Electrochem. Soc., 150 [7] A1008-15 (2003)   DOI   ScienceOn
29 K. D. Kreuer, 'On the Development of Proton Conducting Materials for Technological Applications,' Solid State Ionics, 94 [1-4] 1-15 (1997)   DOI   ScienceOn
30 N. P. Brandon, S. Skinner, and B. C. H. Steele, 'Recent Advances in Materials for Fuel Cells,' Annu. Rev. Mater. Res., 33 183-213 (2003)   DOI   ScienceOn
31 N. Taniguchi, K. Hatoh, J. Niikura, T. Gamo, and H. Iwahara, 'Proton Conductive Properties of Gadolinium-Doped Barium Cerates at High Temperatures,' Solid State Ionics, 53-56 [2] 998-1003 (1992)   DOI   ScienceOn
32 S. Iguchi, 'New Leads for Future FC Vehicles: Intermediate Temperature Fuel Cell and New Hydrogen Storage Materials,' Fuel Cell Seminar, San Antonio, Texas, Nov 2004
33 J. H. Shim, S. W. Cha, R. O'Hayre, T. M. Gur, and F. B. Prinz, 'Proton Transport Membranes for Fuel Cells: Polymeric Versus Dense Ceramic,' 210th Meeting of The Electrochemical Society, Cancun, Mexico, Oct 2006
34 F. B. Prinz, 'Thin Film Fuel Cells,' Gordon Research Conferences, Smithfield, RI, Jul 2006
35 D. A. Boysen, T. Uda, C. R. I. Chisholm, and S. M. Haile, 'High-Performance Solid Acid Fuel Cells Through Humidity Stabilization,' Science, 303 [5654] 68-70 (2004)   DOI   ScienceOn
36 Q. Li, R. He, R. W. Berg, H. A. Hjuler, and N. J. Bjerrum, 'Water Uptake and Acid Doping of Polybenzimidazoles as Electrolyte Membranes for Fuel Cells,' Solid State Ionics, 168 [1-2] 177-85 (2004)   DOI   ScienceOn
37 Savadogo and B. Xing, 'Hydrogen/Oxygen Polymer Electrolyte Membrane Fuel Cell(PEMFC) Based on Acid-Doped Polybenzimidazole(PBI),' J. New Mat. Electrochem. Sys., 3 [4] 343-47 (2000)
38 S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, 'Solid Acids as Fuel Cell Electrolytes,' Nature, 410 [6831] 910-13 (2001)   DOI   ScienceOn
39 C. R. I. Chisholm, Y. H. Jang, S. M. Haile, and W. A. Goddard, 'Superprotonic Phase Transition of $CsHSO_4$: A Molecular Dynamics Simulation Study,' Phy. Rev. B, 72 [13] 134103 (2005)   DOI   ScienceOn
40 J. T. Wang, R. F. Savinell, J. Wainright, M. Litt, and H. Yu, '$H_2/O_2$ Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte,' Electrochim. Acta, 41 [2] 193-97 (1996)   DOI   ScienceOn
41 H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, and F. B. Prinz, 'MEMS Fabrication and Performances of Nano- Thin Solid Oxide Fuel Cell,' 208th Meeting of The Electrochemical Society, Los Angeles, California, October 2005