• Title/Summary/Keyword: cellular response

Search Result 1,361, Processing Time 0.027 seconds

Study of the immunosuppressive activity of methanolic extract of Madhuca longifolia (Koenig)

  • V., Chitra;Ganesh, Dhawle;Shrinivas, Sharma
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.150-154
    • /
    • 2010
  • The immunosuppressive activity of the Methanol extract of bark of Madhuca longifolia (Koenig) consisting of a mixture of saponins, flavonoids, tannins, steroids, phenol and glycosides was studied on the immune responses in mice. Methanol extract of Madhuca longifolia (MLL) was administered orally at doses of 50, 100 and 150 mg/kg/day to healthy mice divided into four groups consisting of six animals each. The assessment of immunomodulatory activity was carried out by testing the humoral (antibody titre) and cellular (foot pad swelling) immune responses to the antigenic challenge by sheep RBCs. Furthermore, the effect on hematological parameters as well as relative organ weight was determined. On oral administration MML showed a significant decrease delayed type hypersensitivity (DTH) response whereas the humoral response to sheep RBCs was unaffected. Thus MLL significantly suppressed the cellular immunity by decreasing the footpad thickness response to sheep RBCs in sensitized mice. With a dose of 100 and 150 mg/kg/day the DTH response was $7.66{\pm}2.75$ and $6.41{\pm}1.21$ respectively in comparison to corresponding value of $14.50{\pm}2.38$ for untreated control group. These differences in DTH response were statistically significant (P < 0.05). The study demonstrates that MLL shows preferential suppression of the components of cell-mediated immunity and shows no effect on the humoral immunity.

Role of RUNX Family Transcription Factors in DNA Damage Response

  • Samarakkody, Ann Sanoji;Shin, Nah-Young;Cantor, Alan B.
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.99-106
    • /
    • 2020
  • Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.

Experimental and numerical investigation on honeycomb, modified honeycomb, and spiral shapes of cellular structures

  • Faisal Ahmed, Shanta;Md Abdullah Al, Bari
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.665-673
    • /
    • 2022
  • Additive manufacturing is an emerging method to manufacture objects with complex shapes and intricate geometry, such as cellular structures. The cellular structures can widely be used in lightweight application as it provides a high strength-to-load ratio. Under the various testing condition, each topology shows different mechanical properties. This study investigates the structural response of various types of cellular structures in compression loading, both experimentally and numerically. For that purpose, honeycomb, modified honeycomb, and spiral-type topology were selected to investigate. Besides, structural properties change by changing the cell size for each topology is also investigated. The specimens were subjected to a compression test by a universal testing machine to determine the absorbed energy and other mechanical properties. An implicit numerical study was also conducted to determine cellular structure's mechanical characteristics. The experimental and numerical results show that the honeycomb structure absorbs the maximum energy compared to the other structures. The experimentally and numerically calculated absorbed energy for the 4.8 mm honeycomb structure was 32.2J and 30.63J, respectively. The results also show that the increase of cell size for a particular cellular structure reduces the energy-absorbing ability of that structure.

Cell-type-specific Gene Expression Patterns in Human Carcinoma Cells followed by Irradiation (방사선에 의한 암세포주 특이적 유전자 발현 양상)

  • Park Ji-Yoon;Kim Jin-Kyu;Chai Young Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.152-156
    • /
    • 2005
  • Ionizing radiation is a well- known therapy factor for human carcinoma cells. Genotoxic stress mediates cell cycle control, transcription and cellular signaling. In this work, we have used a microarray hybridization approach to characterize the cell type-specific transcriptional response of human carcinoma MCF-7 and HeLa cell line to $\gamma-radiation$, such as 4Gy 4hr. We found that exposure to $\gamma-ray$ alters by at least a $log_2$ factor of 1.0 the expression of known genes. Of the 27 genes affected by irradiation, 11 are down- regulated in MCF-7 cells and 2 genes induced by radiation,15 are repressed in HeLa cells. Many genes were involved in known damage- response pathways for cell cycling, transcription factor and cellular signaling response. However, in MCF-7 cells, we observed gene expression pattern in chromatin, apoptosis, stress, differentiation, cytokine, metabolism, ribosome and calcium. In HeLa cells, it showed clearly the expression changes in adhesion and migration, lysosome, brain, genome instability and translation. These insights reveal new therapy directions for studying the human carcinoma cell response to radiation.

A Fuzzy Continuous Petri Net Model for Helper T cell Differentiation

  • Park, In-Ho;Na, Do-Kyun;Lee, Kwang-H.;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.344-347
    • /
    • 2005
  • Helper T(Th) cells regulate immune response by producing various kinds of cytokines in response to antigen stimulation. The regulatory functions of Th cells are promoted by their differentiation into two distinct subsets, Th1 and Th2 cells. Th1 cells are involved in inducing cellular immune response by activating cytotoxic T cells. Th2 cells trigger B cells to produce antibodies, protective proteins used by the immune system to identify and neutralize foreign substances. Because cellular and humoral immune responses have quite different roles in protecting the host from foreign substances, Th cell differentiation is a crucial event in the immune response. The destiny of a naive Th cell is mainly controlled by cytokines such as IL-4, IL-12, and IFN-${\gamma}$. To understand the mechanism of Th cell differentiation, many mathematical models have been proposed. One of the most difficult problems in mathematical modeling is to find appropriate kinetic parameters needed to complete a model. However, it is relatively easy to get qualitative or linguistic knowledge of a model dynamics. To incorporate such knowledge into a model, we propose a novel approach, fuzzy continuous Petri nets extending traditional continuous Petri net by adding new types of places and transitions called fuzzy places and fuzzy transitions. This extension makes it possible to perform fuzzy inference with fuzzy places and fuzzy transitions acting as kinetic parameters and fuzzy inference systems between input and output places, respectively.

  • PDF

HIF-1α-Dependent Gene Expression Program During the Nucleic Acid-Triggered Antiviral Innate Immune Responses

  • Hong, Sun Woo;Yoo, Jae Wook;Kang, Hye Suk;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2009
  • Recent studies suggest a novel role of $HIF-1{\alpha}$ under nonhypoxic conditions, including antibacterial and antiviral innate immune responses. However, the identity of the pathogen-associated molecular pattern which triggers $HIF-1{\alpha}$ activation during the antiviral response remains to be identified. Here, we demonstrate that cellular administration of double-stranded nucleic acids, the molecular mimics of viral genomes, results in the induction of $HIF-1{\alpha}$ protein level as well as the increase in $HIF-1{\alpha}$ target gene expression. Whole-genome DNA microarray analysis revealed that double-stranded nucleic acid treatment triggers induction of a number of hypoxia-inducible genes, and induction of these genes are compromised upon siRNA-mediated $HIF-1{\alpha}$ knock-down. Interestingly, $HIF-1{\alpha}$ knock-down also resulted in down-regulation of a number of genes involved in antiviral innate immune responses. Our study demonstrates that $HIF-1{\alpha}$ activation upon nucleic acid-triggered antiviral innate immune responses plays an important role in regulation of genes involved in not only hypoxic response, but also immune response.

Dephosphorylation of DBC1 by Protein Phosphatase 4 Is Important for p53-Mediated Cellular Functions

  • Lee, Jihye;Adelmant, Guillaume;Marto, Jarrod A.;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.697-704
    • /
    • 2015
  • Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.

Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells

  • Choi, Eui-Hwan;Yoon, Seobin;Hahn, Yoonsoo;Kim, Keun P.
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.143-150
    • /
    • 2017
  • Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

Anti-Ferroptotic Effects of Nrf2: Beyond the Antioxidant Response

  • Aryatara Shakya;Nicholas W. McKee;Matthew Dodson;Eli Chapman;Donna D. Zhang
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.165-175
    • /
    • 2023
  • The transcription factor Nrf2 was originally identified as a master regulator of redox homeostasis, as it governs the expression of a battery of genes involved in mitigating oxidative and electrophilic stress. However, the central role of Nrf2 in dictating multiple facets of the cellular stress response has defined the Nrf2 pathway as a general mediator of cell survival. Recent studies have indicated that Nrf2 regulates the expression of genes controlling ferroptosis, an iron-and lipid peroxidation-dependent form of cell death. While Nrf2 was initially thought to have anti-ferroptotic function primarily through regulation of the antioxidant response, accumulating evidence has indicated that Nrf2 also exerts anti-ferroptotic effects via regulation of key aspects of iron and lipid metabolism. In this review, we will explore the emerging role of Nrf2 in mediating iron homeostasis and lipid peroxidation, where several Nrf2 target genes have been identified that encode critical proteins involved in these pathways. A better understanding of the mechanistic relationship between Nrf2 and ferroptosis, including how genetic and/or pharmacological manipulation of Nrf2 affect the ferroptotic response, should facilitate the development of new therapies that can be used to treat ferroptosis-associated diseases.