Browse > Article
http://dx.doi.org/10.12989/sem.2022.84.5.665

Experimental and numerical investigation on honeycomb, modified honeycomb, and spiral shapes of cellular structures  

Faisal Ahmed, Shanta (Department of Mechanical Engineering, Khulna University of Engineering & Technology)
Md Abdullah Al, Bari (Department of Mechanical Engineering, Khulna University of Engineering & Technology)
Publication Information
Structural Engineering and Mechanics / v.84, no.5, 2022 , pp. 665-673 More about this Journal
Abstract
Additive manufacturing is an emerging method to manufacture objects with complex shapes and intricate geometry, such as cellular structures. The cellular structures can widely be used in lightweight application as it provides a high strength-to-load ratio. Under the various testing condition, each topology shows different mechanical properties. This study investigates the structural response of various types of cellular structures in compression loading, both experimentally and numerically. For that purpose, honeycomb, modified honeycomb, and spiral-type topology were selected to investigate. Besides, structural properties change by changing the cell size for each topology is also investigated. The specimens were subjected to a compression test by a universal testing machine to determine the absorbed energy and other mechanical properties. An implicit numerical study was also conducted to determine cellular structure's mechanical characteristics. The experimental and numerical results show that the honeycomb structure absorbs the maximum energy compared to the other structures. The experimentally and numerically calculated absorbed energy for the 4.8 mm honeycomb structure was 32.2J and 30.63J, respectively. The results also show that the increase of cell size for a particular cellular structure reduces the energy-absorbing ability of that structure.
Keywords
cellular structures; energy absorption; experimental analysis; FEA; honeycomb structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zocca, A., Colombo, P., Gomes, C.M. and Jens, G. (2015), "Additive manufacturing of ceramics: Issues, potentialities, and opportunities", J. Am. Ceram. Soc., 98(7) 1983-2001. https://doi.org/10.1111/jace.13700.     DOI
2 Ajdari, A., Jahromi, B.H., Papadopoulos, J., Nayeb-Hashemi, H. and Vaziri, A. (2012), "Hierarchical honeycombs with tailorable properties", Int. J. Solid. Struct., 49(11-12), 1413-1419. https://doi.org/10.1016/j.ijsolstr.2012.02.029.    DOI
3 Bates, S.R.G., Farrow, I.R. and Trask, R.S. (2016), "3D printed polyurethane honeycombs for repeated tailored energy absorption", Mater. Des., 112, 172-183. https://doi.org/10.1016/j.matdes.2016.08.062.    DOI
4 Dziewit, P., Platek, P., Janiszewski, J., Sarzynski, M., Grazka, M. and Paszkowski, R. (2017), "Mechanical response of additive manufactured regular cellular structures in quasi-static loading conditions-Part I Experimental investigations", Proceedings of the 7th International Conference on Mechanics and Materials in Design, Albufeira, Portugal, April. 
5 Fleck, N. (2016), Metal Foams: A Design Guide Metal Foams: A Design Guide, Butterworth-Heinemann, USA. 
6 Fu, M., Chen, Y., Zhang, W. and Zheng, B. (2016), "Experimental and numerical analysis of a novel three-dimensional auxetic metamaterial", Physica Status Solidi (B): Basic Res., 253(8), 1565-1575. https://doi.org/10.1002/pssb.201552769.    DOI
7 Gao, B., Yang, Q., Zhao, X., Jin, G., Ma, Y. and Xu, F. (2016), "4D bioprinting for biomedical applications", Trend. Biotechnol., 34(9), 746-756. https://doi.org/10.1016/j.tibtech.2016.03.004.    DOI
8 Habib, F.N., Iovenitti, P., Masood, S.H. and Nikzad, M. (2018), "Cell geometry effect on in-plane energy absorption of periodic honeycomb structures", Int. J. Adv. Manuf. Technol., 94(5-8), 2369-2380. https://doi.org/10.1007/s00170-017-1037-z.    DOI
9 George, T. (2014), "Carbon fiber composite cellular structures", Ph.D. Dissertation, University of Virginia, 
10 Ghazlan, A., Nguyen, T., Ngo, T., Linforth, S. and Le, V.T. (2020), "Performance of a 3D printed cellular structure inspired by bone", Thin Wall. Struct., 151, 106713. https://doi.org/10.1016/j.tws.2020.106713.    DOI
11 Holloman, R.L. (2014), "Impulse loading of 3D prismatic cellular structures", Ph.D. Dissertation, University of Virginia, Virginia.
12 Hu, L.L. and Yu, T.X. (2010), "Dynamic crushing strength of hexagonal honeycombs", Int. J. Impact Eng., 37(5), 467-474. https://doi.org/10.1016/j.ijimpeng.2009.12.001.    DOI
13 Karlinski, J., Ptak, M. and Dzialak, P. (2018), "Improving occupant safety in heavy goods vehicles-Universal energy absorbing system", 11th International Science-Technical Conference Automotive Safety, 1-8. https://doi.org/10.1109/AUTOSAFE.2018.8373321.    DOI
14 Kooistra, G.W., Queheillalt, D.T. and Wadley, H.N.G. (2008), "Shear behavior of aluminum lattice truss sandwich panel structures", Mater. Sci. Eng.: A, 472(1-2), 242-250. https://doi.org/10.1016/j.msea.2007.03.034.    DOI
15 Kucewicz, M., Baranowski, P. and Malachowski, J. (2019), "A method of failure modeling for 3D printed cellular structures", Mater. Des., 174, 107802. https://doi.org/10.1016/j.matdes.2019.107802.    DOI
16 Kucewicz, M., Baranowski, P., Malachowski, J., Poplawski, A. and Platek, P. (2018), "Modelling, and characterization of 3D printed cellular structures", Mater. Des., 142, 177-189. https://doi.org/10.1016/j.matdes.2018.01.028.    DOI
17 Momeni, M.F.M., Liu, N.S., Liu, X. and Ni, J. (2017), "A review of 4D printing", Mater. Des., 122, 42-79. https://doi.org/10.1016/j.matdes.2017.02.068.    DOI
18 Lubombo, C. and Huneault, M.A. (2018), "Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts", Mater. Today Commun., 17, 214-228. https://doi.org/10.1016/j.mtcomm.2018.09.017.    DOI
19 Mazurkiewicz, L., Malachowski, J. and Baranowski, P. (2015), "Optimization of protective panel for critical supporting elements", Compos. Struct., 134, 493-505. https://doi.org/10.1016/j.compstruct.2015.08.069.    DOI
20 Minas, C., Carnelli, D., Tervoort, E. and Studart, A.R. (2016), "3D Printing of emulsions and foams into hierarchical porous ceramics", Adv. Mater., 28(45), 9993-9999. https://doi.org/10.1002/adma.201603390.    DOI
21 Oftadeh, R., Haghpanah, B., Vella, D., Boudaoud, A. and Vaziri, A. (2014), "Optimal fractal-like hierarchical honeycombs", Phys. Rev. Lett., 113(10), 1-5. https://doi.org/10.1103/PhysRevLett.113.104301.    DOI
22 Queheillalt, D.T. and Wadley, H.N.G. (2009), "Titanium alloy lattice truss structures", Mater. Des., 30(6), 1966-1975. https://doi.org/10.1016/j.matdes.2008.09.015.    DOI
23 Sangle, S.D. (2017), "Design and testing of scalable 3D-printed cellular structures optimized for energy absorption", MS Dissertation, Wright State University, Dayton, Ohio, USA. 
24 Scarpa, F., Panayiotou, P. and Tomlinson, G. (2000), "Numerical and experimental uniaxial loading on in-plane auxetic honeycombs", J. Strain Anal. Eng. Des., 35(5), 383-388. https://doi.org/10.1243/0309324001514152.    DOI
25 Sun, F., Lai, C. and Fan, H. (2016), "In-plane compression behavior and energy absorption of hierarchical triangular lattice structures", Mater. Des., 100, 280-290. https://doi.org/10.1016/j.matdes.2016.03.023.    DOI
26 Wadley, H.N.G. (2006), "Multifunctional periodic cellular metals", Philos. Trans. Roy Soc. A: Math., Phys. Eng. Sci., 364(1838), 31-68. https://doi.org/10.1098/rsta.2005.1697.    DOI
27 Tantikom, K. and Aizawa, T. (2005), "Compressive deformation simulation of regularly cell-structured materials with various column connectivity", Mater. Trans., 46(6), 1154-1160. https://doi.org/10.2320/matertrans.46.1154.    DOI
28 Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S. and Khalid, K. (2013), "Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces", Thin Wall. Struct., 71, 7-17. https://doi.org/10.1016/j.tws.2013.04.003.    DOI
29 Tsouknidas, A., Pantazopoulos, M., Katsoulis, I., Fasnakis, D., Maropoulos, S. and Michailidis, N. (2016), "Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling", Mater. Des., 102, 41-44. https://doi.org/10.1016/j.matdes.2016.03.154.    DOI
30 Wang, A.J. and McDowell, D.L. (2004), "In-plane stiffness and yield strength of periodic metal honeycombs", J. Eng. Mater. Technol., 126(2), 137-156. https://doi.org/10.1115/1.1646165.    DOI
31 Yan, C., Hao, L., Hussein, A. and Raymont, D. (2012), "Evaluations of cellular lattice structures manufactured using selective laser melting", Int. J. Mach. Tool. Manuf., 62, 32-38. https://doi.org/10.1016/j.ijmachtools.2012.06.002.    DOI
32 Zheng, Y. (2019), "Bioinspired Design of Materials Surfaces", Elsevier, Amsterdam, Netherlands. 
33 Zhu, Z., Dhokia, V., Newman, S.T. and Nassehi, A. (2014), "Application of a hybrid process for high precision manufacture of difficult to machine prismatic parts", Int. J. Adv. Manuf. Technol., 74(5-8), 1115-1132. https://doi.org/10.1007/s00170-014-6053-7.    DOI