Browse > Article
http://dx.doi.org/10.1007/s10059-009-0030-2

HIF-1α-Dependent Gene Expression Program During the Nucleic Acid-Triggered Antiviral Innate Immune Responses  

Hong, Sun Woo (Department of Chemistry and Brain Korea 21 School of Chemical Materials Science, Sungkyunkwan University)
Yoo, Jae Wook (Department of Chemistry and Brain Korea 21 School of Chemical Materials Science, Sungkyunkwan University)
Kang, Hye Suk (Department of Chemistry and Brain Korea 21 School of Chemical Materials Science, Sungkyunkwan University)
Kim, Soyoun (Department of Biomedical Engineeering, Dongguk University)
Lee, Dong-ki (Department of Chemistry and Brain Korea 21 School of Chemical Materials Science, Sungkyunkwan University)
Abstract
Recent studies suggest a novel role of $HIF-1{\alpha}$ under nonhypoxic conditions, including antibacterial and antiviral innate immune responses. However, the identity of the pathogen-associated molecular pattern which triggers $HIF-1{\alpha}$ activation during the antiviral response remains to be identified. Here, we demonstrate that cellular administration of double-stranded nucleic acids, the molecular mimics of viral genomes, results in the induction of $HIF-1{\alpha}$ protein level as well as the increase in $HIF-1{\alpha}$ target gene expression. Whole-genome DNA microarray analysis revealed that double-stranded nucleic acid treatment triggers induction of a number of hypoxia-inducible genes, and induction of these genes are compromised upon siRNA-mediated $HIF-1{\alpha}$ knock-down. Interestingly, $HIF-1{\alpha}$ knock-down also resulted in down-regulation of a number of genes involved in antiviral innate immune responses. Our study demonstrates that $HIF-1{\alpha}$ activation upon nucleic acid-triggered antiviral innate immune responses plays an important role in regulation of genes involved in not only hypoxic response, but also immune response.
Keywords
Antiviral response; DNA microarray; dsDNA; dsRNA; $HIF-1{\alpha}$; nnate immunity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, J.W., Park, S.C., Kang, G.H., Liu, J.O., and Youn, H.D. (2004). Nur77 activated by hypoxia-inducible factor-1alpha overproduces proopiomelanocortin in von Hippel-Lindau-mutated renal cell carcinoma. Cancer Res. 64, 35-39   DOI   ScienceOn
2 Dennis, G., Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., and Lempicki, R.A. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3   DOI
3 Gross, C., Dubois-Pot, H., and Wasylyk, B. (2008). The ternary complex factor Net/Elk-3 participates in the transcriptional response to hypoxia and regulates HIF-1 alpha. Oncogene 27, 1333-1341   DOI   ScienceOn
4 Hwang, I.I., Watson, I.R., Der, S.D., and Ohh, M. (2006). Loss of VHL confers hypoxia-inducible factor (HIF).-dependent resistance to vesicular stomatitis virus: role of HIF in antiviral response. J. Virol. 80, 10712-10723   DOI   ScienceOn
5 Peyssonnaux, C., Cejudo-Martin, P., Doedens, A., Zinkernagel, A.S., Johnson, R.S., and Nizet, V. (2007). Cutting edge: Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J. Immunol. 178, 7516-7519   DOI
6 Yoo, J.W., Hong, S.W., Kim, S., and Lee, D.K. (2006). Inflammatory cytokine induction by siRNAs is cell type- and transfection reagent-specific. Biochem. Biophys. Res. Commun. 347, 1053-1058   DOI   ScienceOn
7 Kim, H.A., Kim, K., Kim, S.W., and Lee, M. (2007a). Transcriptional and post-translational regulatory system for hypoxia specific gene expression using the erythropoietin enhancer and the oxygen-dependent degradation domain. J. Control. Release 121, 218-224   DOI   ScienceOn
8 Ebert, B.L., Firth, J.D., and Ratcliffe, P.J. (1995). Hypoxia and mito chondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J. Biol. Chem. 270, 29083-29089   DOI
9 Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801   DOI   ScienceOn
10 Bosco, M.C., Puppo, M., Santangelo, C., Anfosso, L., Pfeffer, U., Fardin, P., Battaglia, F., and Varesio, L. (2006). Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CCchemokine ligand 20 as a new hypoxia-inducible gene. J. Immunol. 177, 1941-1955   DOI
11 Sonna, L.A., Cullivan, M.L., Sheldon, H.K., Pratt, R.E., and Lilly, C.M. (2003). Effect of hypoxia on gene expression by human hepatocytes (HepG2). Physiol. Genomics 12, 195-207   DOI
12 Manalo, D.J., Rowan, A., Lavoie, T., Natarajan, L., Kelly, B.D., Ye, S.Q., Garcia, J.G., and Semenza, G.L. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659-669   DOI   ScienceOn
13 Wykoff, C.C., Beasley, N.J., Watson, P.H., Turner, K.J., Pastorek, J., Sibtain, A., Wilson, G.D., Turley, H., Talks, K.L., Maxwell, P.H., et al. (2000). Hypoxia-inducible expression of tumorassociated carbonic anhydrases. Cancer Res. 60, 7075-7083
14 Kim, K.S., Rajagopal, V., Gonsalves, C., Johnson, C., and Kalra, V.K. (2006). A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. J. Immunol. 177, 7211-7224   DOI
15 Wang, G.L., and Semenza, G.L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. USA 90, 4304-4308   DOI   ScienceOn
16 Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., and Speed, T.P. (2003). Summaries of affymetrix genechip probe level data. Nucleic Acids Res. 31, e15   DOI   ScienceOn
17 Zinkernagel, A.S., Johnson, R.S., and Nizet, V. (2007). Hypoxia inducible factor (HIF). function in innate immunity and infection. J. Mol. Med. 85, 1339-1346   DOI   ScienceOn
18 An, J., Fisher, M., and Rettig, M.B. (2005). VHL expression in renal cell carcinoma sensitizes to bortezomib (PS-341). through an NF-kappaB-dependent mechanism. Oncogene 24, 1563-1570   DOI   ScienceOn
19 Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193   DOI   ScienceOn
20 Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20, 5197-5206   DOI   ScienceOn
21 van Uden, P., Kenneth, N.S., and Rocha, S. (2008). Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochemistry 412, 477-484   DOI   ScienceOn
22 An, J., and Rettig, M.B. (2005). Mechanism of von Hippel-Lindau protein-mediated suppression of nuclear factor kappa B activity. Mol. Cell. Biol. 25, 7546-7556   DOI   ScienceOn
23 Walmsley, S.R., Print, C., Farahi, N., Peyssonnaux, C., Johnson, R.S., Cramer, T., Sobolewski, A., Condliffe, A.M., Cowburn, A.S., Johnson, N., et al. (2005). Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J. Exp. Med. 201, 105-115   DOI   ScienceOn
24 Franovic, A., Gunaratnam, L., Smith, K., Robert, I., Patten, D., and Lee, S. (2007). Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its over-expression in human cancer. Proc. Natl. Acad. Sci. USA 104, 13092-13097   DOI   ScienceOn
25 Gotea, V., and Ovcharenko, I. (2008). DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res. 36, W133-139   DOI   ScienceOn
26 Dery, M.A., Michaud, M.D., and Richard, D.E. (2005). Hypoxiainducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 37, 535-540   DOI   ScienceOn
27 Zamanian-Daryoush, M., Der, S.D., and Williams, B.R. (1999). Cell cycle regulation of the double stranded RNA activated protein kinase, PKR. Oncogene 18, 315-326   DOI   ScienceOn
28 Nasimuzzaman, M., Waris, G., Mikolon, D., Stupack, D.G., and Siddiqui, A. (2007). Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the synthesis of vascular endothelial growth factor. J. Virol. 81, 10249-10257   DOI   ScienceOn
29 Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92, 5510-5514   DOI   ScienceOn
30 Chi, J.T., Wang, Z., Nuyten, D.S., Rodriguez, E.H., Schaner, M.E., Salim, A., Wang, Y., Kristensen, G.B., Helland, A., Borresen-Dale, A.L., et al. (2006). Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3, e47   DOI
31 Hong, S.W., Kim, S., and Lee, D.K. (2008). The role of Bach2 in nucleic acid-triggered antiviral innate immune responses. Biochem. Biophys. Res. Commun. 365, 426-432   DOI   ScienceOn
32 Kim, H.Y., Kim, Y.H., Nam, B.H., Kong, H.J., Kim, H.H., Kim, Y.J., An, W.G., and Cheong, J. (2007b). HIF-1alpha expression in response to lipopolysaccaride mediates induction of hepatic inflammatory cytokine TNFalpha. Exp. Cell Res. 313, 1866-1876   DOI   ScienceOn
33 Samanta, M., Iwakiri, D., Kanda, T., Imaizumi, T., and Takada, K. (2006). EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J. 25, 4207-4214   DOI   ScienceOn
34 Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R., and Saigo, K. (2004). Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936-948   DOI   ScienceOn
35 Kilani, M.M., Mohammed, K.A., Nasreen, N., Tepper, R.S., and Antony, V.B. (2004). RSV causes HIF-1alpha stabilization via NO release in primary bronchial epithelial cells. Inflammation 28, 245-251   DOI   ScienceOn
36 Liu, X.H., Yu, E.Z., Li, Y.Y., and Kagan, E. (2006). HIF-1alpha has an anti-apoptotic effect in human airway epithelium that is mediated via Mcl-1 gene expression. J. Cell. Biochem. 97, 755-765   DOI   ScienceOn
37 Zhou, J., Schmid, T., and Brune, B. (2003). Tumor necrosis factoralpha causes accumulation of a ubiquitinated form of hypoxia inducible factor-1alpha through a nuclear factor-kappaBdependent pathway. Mol. Biol. Cell 14, 2216-2225   DOI   ScienceOn
38 Frede, S., Stockmann, C., Freitag, P., and Fandrey, J. (2006). Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem. J. 396, 517-527   DOI   ScienceOn
39 Lee, M.S., and Kim, Y.J. (2007). Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol. Cells 23, 1-10   DOI   PUBMED   ScienceOn