Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0304

Role of RUNX Family Transcription Factors in DNA Damage Response  

Samarakkody, Ann Sanoji (Department of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School)
Shin, Nah-Young (Department of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School)
Cantor, Alan B. (Department of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School)
Abstract
Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.
Keywords
cancer; cell cycle arrest; DNA damage response; Fanconi anemia; p53; RUNX1; RUNX2; RUNX3; tumor suppressor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ozaki, T., Nakagawara, A., and Nagase, H. (2013b). RUNX family participates in the regulation of p53-dependent DNA damage response. Int. J. Genomics 2013, 271347.   DOI
2 Ozaki, T., Nakamura, M., Ogata, T., Sang, M., Yoda, H., Hiraoka, K., Sang, M., and Shimozato, O. (2016). Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63. Oncotarget 7, 71937-71950.   DOI
3 Ozaki, T., Wu, D., Sugimoto, H., Nagase, H., and Nakagawara, A. (2013a). Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis. 4, e610.   DOI
4 Pratap, J., Wixted, J.J., Gaur, T., Zaidi, S.K., Dobson, J., Gokul, K.D., Hussain, S., van Wijnen, A.J., Stein, J.L., Stein, G.S., et al. (2008). Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res. 68, 7795-7802.   DOI
5 Wysokinski, D., Blasiak, J., and Pawlowska, E. (2015). Role of RUNX2 in breast carcinogenesis. Int. J. Mol. Sci. 16, 20969-20993.   DOI
6 Yamada, C., Ozaki, T., Ando, K., Suenaga, Y., Inoue, K., Ito, Y., Okoshi, R., Kageyama, H., Kimura, H., Miyazaki, M., et al. (2010). RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53. J. Biol. Chem. 285, 16693-16703.   DOI
7 Yan, J., Liu, Y., Lukasik, S.M., Speck, N.A., and Bushweller, J.H. (2004). CBF${\beta}$ allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat. Struct. Mol. Biol. 11, 901-906.   DOI
8 Zhou, X., Cao, B., and Lu, H. (2017). Negative auto-regulators trap p53 in their web. J. Mol. Cell Biol. 9, 62-68.   DOI
9 Zou, Y., Liu, Y., Wu, X., and Shell, S.M. (2006). Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J. Cell. Physiol. 208, 267-273.   DOI
10 Akech, J., Wixted, J.J., Bedard, K., van der Deen, M., Hussain, S., Guise, T.A., van Wijnen, A.J., Stein, J.L., Languino, L.R., Altieri, D.C., et al. (2010). Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29, 811-821.   DOI
11 Alcalay, M., Meani, N., Gelmetti, V., Fantozzi, A., Fagioli, M., Orleth, A., Riganelli, D., Sebastiani, C., Cappelli, E., Casciari, C., et al. (2003). Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J. Clin. Invest. 112, 1751-1761.   DOI
12 Kuo, M.C., Liang, D.C., Huang, C.F., Shih, Y.S., Wu, J.H., Lin, T.L., and Shih, L.Y. (2009). RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Leukemia 23, 1426-1431.   DOI
13 Jongmans, M.C., Kuiper, R.P., Carmichael, C.L., Wilkins, E.J., Dors, N., Carmagnac, A., Schouten-van Meeteren, A.Y., Li, X., Stankovic, M., Kamping, E., et al. (2010). Novel RUNX1 mutations in familial platelet disorder with enhanced risk for acute myeloid leukemia: clues for improved identification of the FPD/AML syndrome. Leukemia 24, 242-246.   DOI
14 Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R.W. (1991). Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304-6311.
15 Kelsall, I.R., Langenick, J., MacKay, C., Patel, K.J., and Alpi, A.F. (2012). The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair. PLoS One 7, e36970.   DOI
16 Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764.   DOI
17 Krejci, O., Wunderlich, M., Geiger, H., Chou, F.S., Schleimer, D., Jansen, M., Andreassen, P.R., and Mulloy, J.C. (2008). p53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood 111, 2190-2199.   DOI
18 Lamarche, B.J., Orazio, N.I., and Weitzman, M.D. (2010). The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 584, 3682-3695.   DOI
19 Reed, S.M. and Quelle, D.E. (2014). p53 acetylation: regulation and consequences. Cancers (Basel) 7, 30-69.   DOI
20 Qiao, F., Mi, J., Wilson, J.B., Zhi, G., Bucheimer, N.R., Jones, N.J., and Kupfer, G.M. (2004). Phosphorylation of fanconi anemia (FA) complementation group G protein, FANCG, at serine 7 is important for function of the FA pathway. J. Biol. Chem. 279, 46035-46045.   DOI
21 Renaud, E., Barascu, A., and Rosselli, F. (2016). Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Res. 44, 648-656.   DOI
22 Roos, A., Satterfield, L., Zhao, S., Fuja, D., Shuck, R., Hicks, M.J., Donehower, L.A., and Yustein, J.T. (2015). Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br. J. Cancer 113, 1289-1297.   DOI
23 Rickman, K.A., Lach, F.P., Abhyankar, A., Donovan, F.X., Sanborn, E.M., Kennedy, J.A., Sougnez, C., Gabriel, S.B., Elemento, O., Chandrasekharappa, S.C., et al. (2015). Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi anemia. Cell Rep. 12, 35-41.   DOI
24 Rodriguez, A. and D'Andrea, A. (2017). Fanconi anemia pathway. Curr. Biol. 27, R986-R988.   DOI
25 Rodriguez, M.S., Desterro, J.M., Lain, S., Lane, D.P., and Hay, R.T. (2000). Multiple C-terminal lysine residues target p53 for ubiquitin-proteasomemediated degradation. Mol. Cell. Biol. 20, 8458-8467.   DOI
26 Satoh, Y., Matsumura, I., Tanaka, H., Harada, H., Harada, Y., Matsui, K., Shibata, M., Mizuki, M., and Kanakura, Y. (2012). C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Leukemia 26, 303-311.   DOI
27 Schindler, D. and Hoehn, H. (1988). Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am. J. Hum. Genet. 43, 429-435.
28 Bellissimo, D.C. and Speck, N.A. (2017). RUNX1 mutations in inherited and sporadic leukemia. Front. Cell Dev. Biol. 5, 111.   DOI
29 Antony-Debre, I., Manchev, V.T., Balayn, N., Bluteau, D., Tomowiak, C., Legrand, C., Langlois, T., Bawa, O., Tosca, L., Tachdjian, G., et al. (2015). Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood 125, 930-940.   DOI
30 Bae, S.C. and Choi, J.K. (2004). Tumor suppressor activity of RUNX3. Oncogene 23, 4336-4340.   DOI
31 Berardi, M.J., Sun, C., Zehr, M., Abildgaard, F., Peng, J., Speck, N.A., and Bushweller, J.H. (1999). The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Igfold DNA-binding domains. Structure 7, 1247-1256.   DOI
32 Blyth, K., Cameron, E.R., and Neil, J.C. (2005). The RUNX genes: gain or loss of function in cancer. Nat. Rev. Cancer 5, 376-387.   DOI
33 Blyth, K., Vaillant, F., Hanlon, L., Mackay, N., Bell, M., Jenkins, A., Neil, J.C., and Cameron, E.R. (2006). Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res. 66, 2195-2201.   DOI
34 Cai, X., Gao, L., Teng, L., Ge, J., Oo, Z.M., Kumar, A.R., Gilliland, D.G., Mason, P.J., Tan, K., and Speck, N.A. (2015). Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17, 165-177.   DOI
35 Calo, E., Quintero-Estades, J.A., Danielian, P.S., Nedelcu, S., Berman, S.D., and Lees, J.A. (2010). Rb regulates fate choice and lineage commitment in vivo. Nature 466, 1110-1114.   DOI
36 Chan, K.L., Palmai-Pallag, T., Ying, S., and Hickson, I.D. (2009). Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11, 753-760.   DOI
37 Lee, S.H., Manandhar, S., and Lee, Y.M. (2017). Roles of RUNX in hypoxiainduced responses and angiogenesis. Adv. Exp. Med. Biol. 962, 449-469.   DOI
38 Lau, C.C., Harris, C.P., Lu, X.Y., Perlaky, L., Gogineni, S., Chintagumpala, M., Hicks, J., Johnson, M.E., Davino, N.A., Huvos, A.G., et al. (2004). Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcoma. Genes Chromosomes Cancer. 39, 11-21.   DOI
39 Lawley, P.D. and Phillips, D.H. (1996). DNA adducts from chemotherapeutic agents. Mutat. Res. 355, 13-40.   DOI
40 Lee, J.W., Kim, D.M., Jang, J.W., Park, T.G., Song, S.H., Lee, Y.S., Chi, X.Z., Park, I.Y., Hyun, J.W., Ito, Y., et al. (2019). RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restrictionpoint. Nat. Commun. 10, 1897.   DOI
41 Levanon, D. and Groner, Y. (2009). Runx3-deficient mouse strains circa 2008: resemblance and dissimilarity. Blood Cells Mol. Dis. 43, 1-5.   DOI
42 Liddiard, K., Hills, R., Burnett, A.K., Darley, R.L., and Tonks, A. (2010). OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene 29, 2005-2012.   DOI
43 Liu, Y., Tavana, O., and Gu, W. (2019). p53 modifications: exquisite decorations of the powerful guardian. J. Mol. Cell Biol. 11, 564-577.   DOI
44 Lohrum, M.A., Woods, D.B., Ludwig, R.L., Bálint, E., and Vousden, K.H. (2001). C-terminal ubiquitination of p53 contributes to nuclear export. Mol. Cell. Biol. 21, 8521-8532.   DOI
45 Lopez-Martinez, D., Liang, C.C., and Cohn, M.A. (2016). Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cell. Mol. Life Sci. 73, 3097-3114.   DOI
46 Sugimoto, H., Nakamura, M., Yoda, H., Hiraoka, K., Shinohara, K., Sang, M., Fujiwara, K., Shimozato, O., Nagase, H., and Ozaki, T. (2015). Silencing of RUNX2 enhances gemcitabine sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the stimulation of TAp63-mediated cell death. Cell Death Discov. 1, 15010.   DOI
47 Manandhar, S. and Lee, Y.M. (2018). Emerging role of RUNX3 in the regulation of tumor microenvironment. BMB Rep. 51, 174-181.   DOI
48 Shin, M.H., He, Y., Marrogi, E., Piperdi, S., Ren, L., Khanna, C., Gorlick, R., Liu, C., and Huang, J. (2016). A RUNX2-mediated epigenetic regulation of the survival of p53 defective cancer cells. PLoS Genet 12, e1005884.   DOI
49 Singh, T.R., Ali, A.M., Paramasivam, M., Pradhan, A., Wahengbam, K., Seidman, M.M., and Meetei, A.R. (2013). ATR-dependent phosphorylation of FANCM at serine 1045 is essential for FANCM functions. Cancer Res. 73, 4300-4310.   DOI
50 Song, W.J., Sullivan, M.G., Legare, R.D., Hutchings, S., Tan, X., Kufrin, D., Ratajczak, J., Resende, I.C., Haworth, C., Hock, R., et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166-175.   DOI
51 Sun, C., Chang, L., and Zhu, X. (2017). Pathogenesis of ETV6/RUNX1- positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget 8, 35445-35459.   DOI
52 Tay, L.S., Krishnan, V., Sankar, H., Chong, Y.L., Chuang, L.S.H., Tan, T.Z., Kolinjivadi, A.M., Kappei, D., and Ito, Y. (2018). RUNX poly(ADP-ribosyl) ation and BLM interaction facilitate the Fanconi anemia pathway of DNA repair. Cell Rep. 24, 1747-1755.   DOI
53 Wang, C.Q., Krishnan, V., Tay, L.S., Chin, D.W., Koh, C.P., Chooi, J.Y., Nah, G.S., Du, L., Jacob, B., Yamashita, N., et al. (2014). Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects. Cell Rep. 8, 767-782.   DOI
54 Choi, A., Illendula, A., Pulikkan, J.A., Roderick, J.E., Tesell, J., Yu, J., Hermance, N., Zhu, L.J., Castilla, L.H., Bushweller, J.H., et al. (2017). RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 130, 1722-1733.   DOI
55 Cheng, Q. and Chen, J. (2010). Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9, 472-478.   DOI
56 Chi, X.Z., Kim, J., Lee, Y.H., Lee, J.W., Lee, K.S., Wee, H., Kim, W.J., Park, W.Y., Oh, B.C., Stein, G.S., et al. (2009). Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Res. 69, 8111-8119.   DOI
57 Chi, X.Z., Lee, J.W., Lee, Y.S., Park, I.Y., Ito, Y., and Bae, S.C. (2017). Runx3 plays a critical role in restriction-point and defense against cellular transformation. Oncogene 36, 6884-6894.   DOI
58 Chuang, L.S. and Ito, Y. (2010). RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene 29, 2605-2615.   DOI
59 Dronkert, M.L. and Kanaar, R. (2001). Repair of DNA interstrand cross-links. Mutat. Res. 486, 217-247.   DOI
60 Ernst, T., Chase, A., Zoi, K., Waghorn, K., Hidalgo-Curtis, C., Score, J., Jones, A., Grand, F., Reiter, A., Hochhaus, A., et al. (2010). Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Haematologica 95, 1473-1480.   DOI
61 Esposito, M.T., Zhao, L., Fung, T.K., Rane, J.K., Wilson, A., Martin, N., Gil, J., Leung, A.Y., Ashworth, A., and So, C.W. (2015). Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat. Med. 21, 1481-1490.   DOI
62 Chen, F., Wang, M., Bai, J., Liu, Q., Xi, Y., Li, W., and Zheng, J. (2014). Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PLoS One 9, e86917.   DOI
63 Martin, J.W., Zielenska, M., Stein, G.S., van Wijnen, A.J., and Squire, J.A. (2011). The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011, 282745.   DOI
64 Mangan, J.K. and Speck, N.A. (2011). RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit. Rev. Oncog. 16, 77-91.   DOI
65 Marchenko, N.D., Hanel, W., Li, D., Becker, K., Reich, N., and Moll, U.M. (2010). Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell Death Differ. 17, 255-267.   DOI
66 Marechal A. and Zou, L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 5, a012716.   DOI
67 McHugh, P.J., Spanswick, V.J., and Hartley, J.A. (2001). Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2, 483-490.   DOI
68 Meetei, A.R., de Winter, J.P., Medhurst, A.L., Wallisch, M., Waisfisz, Q., van de Vrugt, H.J., Oostra, A.B., Yan, Z., Ling, C., Bishop, C.E., et al. (2003). A novel ubiquitin ligase is deficient in Fanconi anemia. Nat. Genet. 35, 165-170.   DOI
69 Moldovan, G.L. and D'Andrea, A.D. (2009). How the fanconi anemia pathway guards the genome. Annu. Rev. Genet. 43, 223-249.   DOI
70 Naim, V. and Rosselli, F. (2009). The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 11, 761-768.   DOI
71 Whitney, M.A., Royle, G., Low, M.J., Kelly, M.A., Axthelm, M.K., Reifsteck, C., Olson, S., Braun, R.E., Heinrich, M.C., Rathbun, R.K., et al. (1996). Germ cell defects and hematopoietic hypersensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 88, 49-58.   DOI
72 Nguyen, T.V., Riou, L., Aoufouchi, S., and Rosselli, F. (2014). Fanca deficiency reduces A/T transitions in somatic hypermutation and alters class switch recombination junctions in mouse B cells. J. Exp. Med. 211, 1011-1018.   DOI
73 Niraj, J., Farkkila, A., and D'Andrea, A.D. (2019). The Fanconi anemia pathway in cancer. Annu. Rev. Cancer Biol. 3, 457-478.   DOI
74 Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H., and Speck, N.A. (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 93, 3444-3449.   DOI
75 Wang, W. (2007). Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat. Rev. Genet. 8, 735-748.   DOI
76 Westendorf, J.J., Zaidi, S.K., Cascino, J.E., Kahler, R., van Wijnen, A.J., Lian, J.B., Yoshida, M., Stein, G.S., and Li, X. (2002). Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol. Cell. Biol. 22, 7982-7992.   DOI
77 Wilson, J.B., Blom, E., Cunningham, R., Xiao, Y., Kupfer, G.M., and Jones, N.J. (2010). Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance. Mutat. Res. 689, 12-20.   DOI
78 Fischer, M. (2017). Census and evaluation of p53 target genes. Oncogene 36, 3943-3956.   DOI
79 Wotton, S.F., Blyth, K., Kilbey, A., Jenkins, A., Terry, A., Bernardin-Fried, F., Friedman, A.D., Baxter, E.W., Neil, J.C., and Cameron, E.R. (2004). RUNX1 transformation of primary embryonic fibroblasts is revealed in the absence of p53. Oncogene 23, 5476-5486.   DOI
80 Wu, D., Ozaki, T., Yoshihara, Y., Kubo, N., and Nakagawara, A. (2013). Runtrelated transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation. J. Biol. Chem. 288, 1353-1364.   DOI
81 Forster, V.J., Nahari, M.H., Martinez-Soria, N., Bradburn, A.K., Ptasinska, A., Assi, S.A., Fordham, S.E., McNeil, H., Bonifer, C., Heidenreich, O., et al. (2016). The leukemia-associated RUNX1/ETO oncoprotein confers a mutator phenotype. Leukemia 30, 250-253.
82 Forus, A., Weghuis, D.O., Smeets, D., Fodstad, O., Myklebost, O., and Geurts van Kessel, A. (1995). Comparative genomic hybridization analysis of human sarcomas: II. identification of novel amplicons at 6p and 17p in osteosarcomas. Genes Chromosomes Cancer 14, 15-21.   DOI
83 Imai, Y., Kurokawa, M., Tanaka, K., Friedman, A.D., Ogawa, S., Mitani, K., Yazaki, Y., and Hirai, H. (1998). TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem. Biophys. Res. Commun. 252, 582-589.   DOI
84 Godley, L.A. (2014). Inherited predisposition to acute myeloid leukemia. Semin. Hematol. 51, 306-321.   DOI
85 Haneline, L.S., Broxmeyer, H.E., Cooper, S., Hangoc, G., Carreau, M., Buchwald, M., and Clapp, D.W. (1998). Multiple inhibitory cytokines induce deregulated progenitor growth and apoptosis in hematopoietic cells from Fac-/- mice. Blood 91, 4092-4098.   DOI
86 Harada, Y. and Harada, H. (2011). Molecular mechanisms that produce secondary MDS/AML by RUNX1/AML1 point mutations. J. Cell. Biochem. 112, 425-432.   DOI
87 Ito, Y., Bae, S.C., and Chuang, LS. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95.   DOI
88 Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771.   DOI
89 O'Keefe, K., Li, H., and Zhang, Y. (2003). Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol. Cell. Biol. 23, 6396-6405.   DOI
90 Osato, M. (2004). Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23, 4284-4296.   DOI
91 Owen, C.J., Toze, C.L., Koochin, A., Forrest, D.L., Smith, C.A., Stevens, J.M., Jackson, S.C., Poon, M.C., Sinclair, G.D., Leber, B., et al. (2008). Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood 112, 4639-4645.   DOI