• Title/Summary/Keyword: cellular protective effect

Search Result 338, Processing Time 0.026 seconds

Antioxidant Activity of Cercis chinensis and Its Protective Effect on Skin Aging

  • Na, Min-Kyun;Bae, Ki-Hwan;Hong, Nam-Doo;Yoo, Jae-Kuk;Nobuhiko Miwa
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.117-138
    • /
    • 2003
  • Reactive oxygen species are capable of damaging biomolecules such as lipids, proteins, and DNA, which can not only lead to various diseases, but also oxidative damage resulting aging. In our previous study, Cercis chinensis (Leguminosae) showed a potent antioxidant activity. Nineteen compounds were isolated through antioxidant activity-guided fractionation. The C. chinensis extract and some of the constituents exhibited a potent antioxidant activity on the free radicals and lipid peroxidation and a notable protective effect on the t-BuOOH induced oxidative damage. In vivo test of skin damage induced by UVB irradiation, the extract of C. chinensis and a constituent, piceatannol, exhibited a significant protective effect. The life-span of the HEK-N/F cells were extended by 1.21-2.12 fold as a result of the continuous administration of 3 $\mu\textrm{g}$/ml of the C. chinensis extract and the active constituents compared to that of the control. These observations were attributed to the inhibitory effect of the C. chinensis extract and its constituents on the age-dependent shortening of the telomere. Thus, C. chinensis was demonstrated to protect the skin cells against oxidative stress and inhibit thereby the cellular aging, followed by expectation as antiaging cosmetic ingredient.

  • PDF

Gomisin J with Protective Effect Against t-BHP-Induced Oxidative Damage in HT22 Cells from Schizandra chinensis

  • An, Ren-Bo;Oh, Seung-Hwan;Jeong, Gil-Saeng;Kim, Youn-Chul
    • Natural Product Sciences
    • /
    • v.12 no.3
    • /
    • pp.134-137
    • /
    • 2006
  • Four lignan compounds including gomisin J (1), schizandrin (2), gomisin A (3), and angeloyl gomisin H (4) have been isolated from the MeOH extract of Schizandra chinensis fruits. The evaluation for protective effect of compounds 1-4 against tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity in hippocampal HT22 cell line was conducted. Compound 1 showed significant protective effect with an $EC_{50}$ value of $43.3{\pm}2.3\;{\mu}M$, whereas compounds 2-4 were inactive. Trolox, one of the well-known antioxidant, used as a positive control, and also showed protective effect with an $EC_{50}$ value of $213.8{\pm}8.4\;{\mu}M$. These results suggest that compound 1 may possess the neuroprotective activity against oxidant-induced cellular injuries.

Cellular Protective Effects and Antioxidative Activity of Resveratrol (레스베라트롤의 세포보호 및 항산화 효과)

  • Jo, Na Rae;Park, Su Ah;Jeon, So Ha;Ha, Ji Hoon;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.483-488
    • /
    • 2013
  • In this study, the cellular protective effect of resveratrol on oxidative damage and its antioxidative activity were investigated. The free radical-scavenging activity ($FSC_{50}$) of resveratrol was measured to be $103{\mu}M$. The reactive oxygen species-scavenging activity ($OSC_{50}$) of resveratrol on the ROS generated in a $Fe^{3+}-EDTA/H_2O_2$ system was investigated using the luminol-dependent chemiluminescence assay. Resveratrol displayed $0.042{\mu}M$ ROS scavenging activity, which is 9.6-fold higher than that of L-ascorbic acid ($0.405{\mu}M$) and had a more prominent cellular protective effect than (+)-${\alpha}$-tocopherol. When HaCaT cells were exposed to $800mJ/cm^2$ of UVB or treated with $30{\mu}M$ rose bengal, resveratrol protected the cells against oxidative stress in a concentration-dependent manner; however, it was unable to protect the cells when the damage was induced by 10 mM $H_2O_2$. These results indicate that resveratrol could be employed to improve and prevent the skin aging through its antioxidative and cellular protective activities.

Cellular Protective Effect and Component Analysis of Euphorbia humifusa Extracts (땅빈대 추출물의 세포 보호 효과 및 성분 분석에 관한 연구)

  • Kim, Sun-Young;Won, Doo-Hyun;Lim, Myoung-Sun;Park, Soo-Nam
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.4
    • /
    • pp.264-269
    • /
    • 2010
  • In this study, the cellular protective effect, antioxidative property and component analysis of Euphorbia humifusa extracts were investigated. The ethyl acetate fraction ($3.68\;{\mu}g/mL$) and aglycone fraction ($3.15\;{\mu}g/mL$) of Euphorbia humifusa extract showed prominent free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$). Reactive oxygen species (ROS) scavenging activity ($OSC_{50}$) of Euphorbia humifusa extract on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system was investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction ($0.43\;{\mu}g/mL$) and aglycone fraction ($0.35\;{\mu}g/mL$) of extract showed higher ROS scavenging activity than L-ascorbic acid ($1.50\;{\mu}g/mL$). The cellular protective effects of fractions of Euphorbia humifusa extract on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction and aglycone fraction of extract protected cellular membranes against ROS in a concentration dependent manner ($5{\sim}25\;{\mu}g/mL$), and was more effective than (+)-${\alpha}$-tocopherol, lipid peroxidation chain blocker. Aglycone fraction from Euphorbia humifusa extract showed 2 bands in TLC and 2 peaks in HPLC. In HPLC chromatogram of aglycone fraction, peak 1 and peak 2 were identified as quercetin and kaempferol, respectively. And these components are very effective as antioxidant. Thus, these results indicate that fractions of Euphorbia humifusa extracts can function as antioxidant in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. Fractions of Euphorbia humifusa extracts can be applicable to new functional cosmetics for antioxidant.

Protective Effect of Cheonjeongkibo-Dan UV-Induced Cellular Damage in Human Dermal Fibroblast (천정기보단(天精氣保丹)의 자외선에 의한 세포 손상 억제 효과)

  • Lee, Ghang-Tai;Park, Si-Jun;Lee, Jung-No;Lee, Kwang-Sik;Kim, Dae-Sung;Mun, Yeun-Ja;Lee, Kun-Kuk;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.950-955
    • /
    • 2010
  • In this study, we prepared CheonJeongKiBo-Dan(7 oriental medicinal plants, 7OMP: Astragalus Membranaceus root, Panax Ginseng root, Glycyrrhiza Glabra (licorice) root, Schizandra Chinensis fruit, Polygonatum Odoratum, Rehmannia Glutinosa root, Paeonia Albiflora root) by extracting them in one reactor and studied its efficacies on skin. UV irradiation has been suggested as a major cause of photoaging in skin. In order to investigate protective effects against UV-B induced cellular damage, 7OMP was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, reactive oxygen species (ROS) generation, phosphorylation of ATR and p53 in human dermal fibroblast cell system after UV-B irradiation. 7OMP reduced UV-B-induced cellular damage in HDFs cells, and inhibited ROS generation. UV-B-induced toxicity accompanying ROS production and the resultant DNA damage are responsible for activation of ATR, p53 and Bad. In this study, 7OMP hampered phosphorylations of ATR and p53 in human dermal fibroblasts. Therefore, 7OMP may be protective against UV-induced skin photoaging.

Protective Effect of Some Medicinal Plants on tert-Butyl Hydroperoxide-Induced Oxidative Stress in Human Keratinocytes

  • Na, Min-Kyun;Jang, Tae-Su;Choi, Ji-Young;Lee, Seung-Ho;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.244-248
    • /
    • 2008
  • It is well known that excessive production of reactive oxygen species (ROS) leads to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. To search for natural antioxidants able to modulate cellular oxidative stress, we investigated the protective effect of ethanol extracts of 17 medicinal plants selected from the preliminary antioxidant screening on tert-butyl hydroperoxide (t-BuOOH)-induced oxidative stress in human keratinocytes. The result showed that extracts of the four plants, Distylium racemosum, Astilbe chinensis, Cercis chinensis and Sapium japonicum, exhibited significant cytoprotective activity (over 50% protection) against t-BuOOH-induced cellular injury.

The Protective Effects of Astragali Radix Against UV Induced Cellular Damage in Human Keratinocytes (황기의 자외선에 의한 세포 손상을 막는 보호 효과)

  • Lee, Jin-Young;Park, Hye-Yoon;Yeom, Myeong-Hun;Kim, Duck-Hee;Kim, Han-Kon
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • The root of Astragalus membranaceus Bunge (Leguminosae) has been used in the Korean oriental medicine for strengthening the vital energy. UV irradiation has been suggested as a major cause of photo aging in skin. In order to investigate protective effects against UV induced cellular damage, Astragali Radix was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, LDH assay, and Comet assay in immortalized human keratinocyte cell line, HaCaT cell system after UV irradiation. Astragli Radix 70% EtOH extract reduced UV induced cellular damage in cell survival, membrane integrity and DNA damage.

Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

  • Lee, Seon-Mi;Choi, Youngmin;Sung, Jeehye;Kim, Younghwa;Jeong, Heon-Sang;Lee, Junsoo
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.348-352
    • /
    • 2014
  • Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and $100{\mu}g/mL$ of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells.

Antioxidative effects of Kimchi under different fermentation stage on radical-induced oxidative stress

  • Kim, Boh Kyung;Choi, Ji Myung;Kang, Soon Ah;Park, Kun Young;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.8 no.6
    • /
    • pp.638-643
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Kimchi is a traditional Korean fermented vegetable containing several ingredients. We investigated the protective activity of methanol extract of kimchi under different fermentation stages against oxidative damage. MATERIALS/METHODS: Fresh kimchi (Fresh), optimally ripened kimchi (OptR), and over ripened kimchi (OvR) were fermented until the pH reached pH 5.6, pH 4.3, and pH 3.8, respectively. The radical scavenging activity and protective activity from oxidative stress of kimchi during fermentation were investigated under in vitro and cellular systems using LLC-$PK_1$ cells. RESULTS: Kimchi exhibited strong radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl, nitric oxide, superoxide anion, and hydroxyl radical. In addition, the free radical generators led to loss of cell viability and elevated lipid peroxidation, while treatment with kimchi resulted in significantly increased cell viability and decreased lipid peroxidation. Furthermore, the protective effect against oxidative stress was related to regulation of cyclooxygenase-2, inducible nitric oxide synthase, nuclear factor-${\kappa}B$ p65, and $I{\kappa}B$ expression. In particular, OvR showed the strongest protective effect from cellular oxidative stress among other kimchi. CONCLUSION: The current study indicated that kimchi, particularly OptR and OvR, played a protective role against free radical-induced oxidative stress. These findings suggest that kimchi is a promising functional food with an antioxidative effect and fermentation of kimchi led to elevation of antioxidative activity.

Effect of Kamihaengche-tang Plus Yukmijihwang-tang Oxidant-induced Liver Cell injury (Oxidant에 의한 간독성유발에 가미행체엽탕 합 육미지황탕의 효과)

  • 이수행;김우환
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.464-471
    • /
    • 1998
  • This study was carried out to determine whether Kamihaengche-tang plus Yukmijihwang-tang (KCYH) exerts the protective effect against oxidant-induced liver cell injury. Cell injurt was estimated by measuring lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) release, and lipid peroxidation was estimated by measuring malondialdehyde, a product of lipid peroxidation in rabbit liver slices. $H_2O_2$increased LDH release which was significantly prevented by 1% KCYHT. The protective effect of KCYH against $H_2O_2$-induced cell injury was dose-dependent in the range of 0.05-1% concentrations. Similary, KCYH inhibited $H_2O_2$ induced lipid peroxidation in a dose-dependent manner. When liver tissuse were exposed to Hg(0.5 mM), ALT activity in the medium and lipid erpoxidation in tissues were markedly increased. These changes were prevented by 1% KCYH. KCHY restored Hg-induced inhibition of cellular GSH content. These result indicate that KCYH exerts the protective effect oxidant-induced liver cell injury, and this effect is attributed to prevented to prevention of lipid peroxidation. These dffects may be due to an increase in concentration of endogenous antioxidants.

  • PDF