• 제목/요약/키워드: cell-cell interaction

검색결과 1,345건 처리시간 0.024초

Game Theory based Dynamic Spectrum Allocation for Secondary Users in the Cell Edge of Cognitive Radio Networks

  • Jang, Sungjin;Kim, Jongbae;Byun, Jungwon;Shin, Yongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2231-2245
    • /
    • 2014
  • Cognitive Radio (CR) has very promising potential to improve spectrum utilization by allowing unlicensed Secondary Users (SUs) to access the spectrum dynamically without disturbing licensed Primary Users (PUs). Mitigating interference is a fundamental problem in CR scenarios. This is particularly problematic for deploying CR in cellular networks, when users are located at the cell edge, as the inter-cell interference mitigation and frequency reuse are critical requirements for both PUs and SUs. Further cellular networks require higher cell edge performance, then SUs will meet more challenges than PUs. To solve the performance decrease for SUs at the cell edge, a novel Dynamic Spectrum Allocation (DSA) scheme based on Game Theory is proposed in this paper. Full frequency reuse can be realized as well as inter-cell interference mitigated according to SUs' sensing, measurement and interaction in this scheme. A joint power/channel allocation algorithm is proposed to improve both cell-edge user experience and network performance through distributed pricing calculation and exchange based on game theory. Analytical proof is presented and simulation results show that the proposed scheme achieves high efficiency of spectrum usage and improvement of cell edge SUs' performance.

Clustered LAG-1 binding sites in lag-1/CSL are involved in regulating lag-1 expression during lin-12/Notch-dependent cell-fate specification

  • Choi, Vit Na;Park, Seong Kyun;Hwang, Byung Joon
    • BMB Reports
    • /
    • 제46권4호
    • /
    • pp.219-224
    • /
    • 2013
  • The cell-fate specification of the anchor cell (AC) and a ventral uterine precursor cell (VU) in Caenorhabditis elegans is initiated by a stochastic interaction between LIN-12/Notch receptor and LAG-2/Delta ligand in two neighboring Z1.ppp and Z4.aaa cells. Both cells express lin-12 and lag-2 before specification, and a small difference in LIN-12 activity leads to the exclusive expressions of lin-12 in VU and lag-2 in the AC, through a feedback mechanism of unknown nature. Here we show that the expression pattern of lag-1/CSL, a transcriptional repressor itself that turns into an activator upon binding of the intracellular domain of Notch, overlaps with that of lin-12. Site-directed mutagenesis of LAG-1 binding sites in lag-1 maintains its expression in the AC, and eliminates it in the VU. Thus, AC/VU cell-fate specification appears to involve direct regulation of lag-1 expression by the LAG-1 protein, activating its transcription in VU cells, but repressing it in the AC.

저근백피의 Virus-Cell Fusion 저해활성 성분 (Virus-Cell Fusion Inhibitory Compounds from Ailanthus altissima Swingle)

  • 장영수;문영희;우은란
    • 생약학회지
    • /
    • 제34권1호통권132호
    • /
    • pp.28-32
    • /
    • 2003
  • In order to search for the anti-HIV agents from natural products, eighty MeOH extracts of medicinal plants were applied to a syncytia formation inhibition assay which is based on the interaction between the HIV-1 envelope glycoprotein gp120/gp41 and the cellular membrane protein CD4 of T lymphocytes. Among them, Ailanthus altissima showed a potent virus-cell fusion inhibitory activity. Repeated column chromatoghaphy of the methylene chloride fraction of A. altissima afforded compounds 1$({\beta}-sitosterol-3-O-{\beta}-D-glucoside)$, 2(tetramethoxycoumarin), and 3(ocotillone). Virus-cell fusion inhibitory activity of compound 3(ocotillone) was $70.76{\pm}4.09%$ at the concentration of $100\;{\mu}g/ml$.

PKA Inhibitor KT5720, Suppressed Cytoskeletal Components Effect by Vesicular Stomatitis Virus, but did not Affect the Viral Replication

  • 김영숙
    • KSBB Journal
    • /
    • 제22권5호
    • /
    • pp.282-287
    • /
    • 2007
  • The antiviral mechanism of KT5720 is known to inhibit the cAMP-dependent protein kinase (PKA), on the VSV infection in BHK-21 cell cultures. The virus inducted CPE (cell rounding) was almost completely suppressed by KT5720 at 5 uM. The inhibitor, however, did not affect the replication of the virus and the synthesis of viral macromolecules. Immunological studies showed the viral matrix (M) protein displayed intimate association with the cytoskeletal components and probably the cell rounding. KT5720, did not block the cytoskeletal disruption, while the cell rounding was suppressed. These observations suggest that the interaction between the viral M protein and the cytoskeletal components may not be enough to cause the morphological change of the cell. And, the KT5720-sensitive function may be involved in developing the VSV-induced CPE, but not essential for the virus replications.

Roles of YAP in mediating endothelial cell junctional stability and vascular remodeling

  • Choi, Hyun-Jung;Kwon, Young-Guen
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.429-430
    • /
    • 2015
  • Angiogenesis is a complex process involving dynamic interaction of various cell to cell interactions. Endothelial cell interactions regulated by growth factors, inflammatory cytokines, or hemodynamic stress are critical for balancing vascular quiescence and activation. Yes-associated protein (YAP), an effector of Hippo signaling, is known to play significant roles in maintaining cellular homeostasis. However, its role in endothelial cells for angiogenic regulation remains relatively unexplored. We demonstrated the critical role of YAP in vascular endothelial cells and elucidated the underlying molecular mechanisms involved in angiogenic regulation of YAP. YAP was expressed in active angiogenic regions where endothelial cell junctions were relatively loosened. Consistently, YAP subcellular localization and activity were regulated by VE-cadherin-mediated PI3K/Akt pathway. YAP thereby regulated endothelial sprouting via angiopoietin-2 expression. These results provide an insight into a model of coordinating endothelial junctional stability and angiogenic activation through YAP. [BMB Reports 2015; 48(8): 429-430]

Role of vascular smooth muscle cell in the inflammation of atherosclerosis

  • Lim, Soyeon;Park, Sungha
    • BMB Reports
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.

Assessing the Nano-Dynamics of the Cell Surface

  • Bae, Chil-Man;Park, Ik-Keun;Butler, Peter J.
    • 비파괴검사학회지
    • /
    • 제32권3호
    • /
    • pp.263-268
    • /
    • 2012
  • It is important to know the mechanism of cell membrane fluctuation because it can be readout for the nanomechanical interaction between cytoskeleton and plasma membrane. Traditional techniques, however, have drawbacks such as probe contact with the cell surface, complicate analysis, and limit spatial and temporal resolution. In this study, we developed a new system for non-contact measurement of nano-scale localized-cell surface dynamics using modified-scanning ion-conductance microscopy. With 2 nm resolution, we determined that endothelial cells have local membrane fluctuations of ~20 nm, actin depolymerization causes increase in fluctuation amplitude, and ATP depletion abolishes all membrane fluctuations.

Disruption of ATP binding destabilizes NPM/B23 and inhibits anti-apoptotic function

  • Choi, Joung-Woo;Lee, Sang-Bae;Ahn, Jee-Yin;Lee, Kyung-Hoon
    • BMB Reports
    • /
    • 제41권12호
    • /
    • pp.840-845
    • /
    • 2008
  • Nucleophosmin/B23, a major nucleolar phosphoprotein, is overexpressed in actively proliferating cells. In this study, we demonstrate that B23 exclusively localizes in the nucleolus, whereas ATP depletion results in the redistribution of B23 throughout the whole nucleus and destabilizes B23 via caspase-3 mediated cleavage. Interestingly, ATP binding precedes PI(3,4,5)P3 binding at lysine 263 and ATP binding mutants fail to restore the anti-apoptotic functions of B23 in PC12 cells. Thus, the ATP-B23 interaction is required for the stability of the B23 protein and regulates cell survival, confining B23 within the nucleolus in PC12 cells.

BIR Containing Proteins (BIRPs): More Than Just Cell Death Inhibitors

  • Yoo, Soon-Ji
    • Animal cells and systems
    • /
    • 제9권4호
    • /
    • pp.181-190
    • /
    • 2005
  • BIRPs (BIR containing Proteins) which contain one to three BIR domains constitute a highly conserved family from yeast to human. BIR domains mediate the interaction of BIRPs with various other proteins. Some of the members acquire a Ring domain which acts as an E3 ubiquitin ligase. The first member of BIRPs identified in the baculovirus was found as an inhibitor of apoptosis and most of the family members in the other species have been recognized to have the same function which bind to and inhibit caspases, thereby suppresses apoptotic cell death. But an increasing number of evidences indicate that BIRPs are involved in various cellular events such as cell division, control of cell cycle, signal transduction, cell migration, innate immunity as well as regulation of apoptosis. In this review, we summarize the structural and functional features of the BIRPs, especially focus on the various functions of BIRPs unrelated to regulation of apoptosis by the recent findings.

Cellular Adhesion and Growth on the Vertically Aligned Silicon Nanowire Arrays

  • 윤서영;박이슬;이진석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.266.2-266.2
    • /
    • 2013
  • According to advanced nanotechnology, the nanostructured materials with various kinds and shape are synthesized easily or produced by process. Recently, researches about interaction between the nanostructured materials and biological system have been progressed actively. The surface topography may influence cellular responses, for example cell adhesion, cell morphology. In this work, we synthesized vertically aligned silicon nanowires (SiNWs) on the Au-covered Si(111) wafer by chemical vapor deposition (CVD) method. We accomplished to control of the SiNWs diameter by regulating thickness of Au film such as 1 nm and 10 nm. These substrates did not isolate cells and just provided surface topography for cell culture. Human Embryonic Kidney 293T cells (HEK 293T cells) were cultured on these substrates for 2 days. We studied the nanotopographical effects on cell morphology, adhesion, and growth which are evaluated on each SiNWs substrate comparing bare glass as control.

  • PDF