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Abstract 
 

Cognitive Radio (CR) has very promising potential to improve spectrum utilization by 
allowing unlicensed Secondary Users (SUs) to access the spectrum dynamically without 
disturbing licensed Primary Users (PUs). Mitigating interference is a fundamental problem in 
CR scenarios. This is particularly problematic for deploying CR in cellular networks, when 
users are located at the cell edge, as the inter-cell interference mitigation and frequency reuse 
are critical requirements for both PUs and SUs. Further cellular networks require higher cell 
edge performance, then SUs will meet more challenges than PUs. To solve the performance 
decrease for SUs at the cell edge, a novel Dynamic Spectrum Allocation (DSA) scheme based 
on Game Theory is proposed in this paper. Full frequency reuse can be realized as well as 
inter-cell interference mitigated according to SUs’ sensing, measurement and interaction in 
this scheme. A joint power/channel allocation algorithm is proposed to improve both cell-edge 
user experience and network performance through distributed pricing calculation and 
exchange based on game theory. Analytical proof is presented and simulation results show that 
the proposed scheme achieves high efficiency of spectrum usage and improvement of cell 
edge SUs’ performance. 
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1. Introduction 

Today, spectrum is one of the most valuable natural resource. In order to utilize spectrum 
fully, Dynamic Spectrum Allocation (DSA) is a promising approach to increase efficiency for 
wireless networks. The approach has attracted a great deal of attention and has been widely 
researched [1][2]. A key technology of the approach is cognitive radio (CR) [3][4], which 
provides unlicensed users capability of sharing the wireless channels with licensed users in an 
negotiated or opportunistic manner. It is realized by SUs’ sensing the “idle” channels.  There 
are varying sensing methods for SUs such as energy detection and matched-filtering sensing. 
After sensing, the data of channels are used for channel selection by SUs. And then, the SUs 
decide to grant access or not. However, the same channel could be used by a PU or SU 
simultaneously due to limited range of detection and frequency reuse. As a result, 
interferences between PUs and SUs might be occurred. An important interference is the 
inter-cell interference. In order to mitigate the interference and improve spectrum efficiency, it 
is necessary to improve the DSA algorithm. 

Traditionally, a network-wide spectrum assignment is carried out by a central server. 
Recently, distributed spectrum allocation approaches have been studied to share spectrum 
efficiently that is based on solely on local observations. In [5], the research challenges of 
spectrum management in cognitive radio networks are introduced. In [6][7], game theory 
approaches are presented to deploy DSA. In [8], Markov models are used for DSA. Graph 
coloring methods are proposed in [9]. This work mostly focuses on ad hoc scenarios, but 
seldom refers to cellular networks. 

Because of complex channel characteristics and interference in multi-user cellular networks, 
DSA is more difficult to design as it is constrained by inter-cell interference mitigation 
considerations and frequency reuse requirements. Also, future cellular networks require a 
higher number of cell edge users throughput [10]. In order to improve cell edge performance 
as well as suppress inter-cell interference, dynamic frequency allocation schemes have been 
proposed, such as Soft Frequency Reuse (SFR) [11] and Fractional Frequency Reuse (FFR) 
[12]. In these schemes, cell-edge users can only use part of the total frequency bands, thereby 
reducing the inter-cell interference and improving cell edge data rate. However, it comes at a 
cost of bandwidth reduction. 

1.1 Related works 
In this paper, we focus on the scenario where SUs with cognition ability coexist with PUs 

and SUs share channels in the cell edge, which is shown in Fig. 1. The PUs are licensed to 
access the cellular network, and SUs continuously sense the channels and exploit spectrum 
“holes” for their transmissions, then access the network as unlicensed users.  

There are some previous work address here. The reference [13] assumed that SUs’ 
transmissions do not interfere with each other, i.e., only one SU can operate over a given 
channel in a given neighborhood. Consequently, there is no spectrum sharing among SUs. 
Such schemes limit the number of access users, especially when the number of channels is 
small.  Makki and Eriksson introduced the an interference indicator signal, which can get 
further potential benefits for data transmission of SUs. The ergodic achievable rates of CR 
based spectrum sharing networks are also researched. And this paper didn’t implement the 
standard inter-cell interference avoiding methods, which proposed that the SU’s activity is not 
restricted within the PU’s inactive periods [14]. The reference [15-16] researched on the 
cognitve radio networks with Relay scenario and cooperative communication techniques 
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implemented scenario separately. The spectrum sharing performances are evaluated with 
different service types. But the interferenceds for SUs at the cell edge are not involved.  

Considering co-channel scenarios in cell edge, we allow multiple SUs in adjacent cell edges 
to share a particular channel in our work to improve frequency utilization. After sensing a 
spectrum opportunity, SUs will measure the signal-to-interference plus noise ratio (SINR) and 
then determine whether they are cell edge users according to predefined threshold. If SUs are 
cell edge users, they need to share channels with other cell edge SUs using the same channels. 
Interference is measured and interference information is exchanged to mitigate inter-cell 
interference and improve spectrum utilization. 

1.2 Contributions 
In this article, we propose a game theory based DSA scheme to formulate the interactions 

and achievable utilities of cell edge SUs. The main contributions of this article are summrized 
as follows. 

1) The proposed utility function is defined to measure the reward SUs received from the 
network. SUs on the edge of cells cooperatively and competitively share the channels to 
maximize their own utilities. A user-dependent pricing function is presented and SUs 
exchange their pricings to indicate the “cost” of relative interferences.  

2) We also propose a price-based iterative algorithm, in which we derive the user-dependent 
water filling levels according to the SU’s pricings to achieve locally optimal Nash 
Equilibrium (NE) and mitigate interference after iterations. Such a pricing function can 
be determined by allowing each SU to cooperatively acquire its neighborhood 
information via signaling exchanges with a small group of neighborhood SUs.  

3)The SUs-to-SUs and SUs-to-PUs interference are treated respectively through setting 
corresponding protection factors to futher reduce SUs-to-PUs interference.  

Based on the analytical proof and simulation results, the proposed joint power/channel 
allocation algorithm can effectively improve both cell-edge user experiences and network 
performances.  

The remainder of the paper is organized as follows: the system model is described in section 
2. In section 3, the improved DSA scheme is formulated and analyzed based on the game 
theroy. Performance evaluation results are provided in section 4. Section 5 concludes the 
paper. 

 
Fig. 1. System scenarios in Cognitive Radio Networks 
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2. System Model 
We assume that a cellular network consists of PUs and SUs. PUs are licensed users, who have 
priority to access the network. SUs are unlicensed users and work on unutilized spectrum 
temporally.  

In this paper, the total spectrum contains K  orthogonal frequency sub-channels, which are 
shared by all the users, including the PUs and SUs. In other words, one sub-channel cannot be 
occupied by different users at the same time in the same cell. But for the multi-cell 
environments, the adjacent cell users could be allocated with the same sub-channels, which 
may cause the resource collisions and inter-cell interferences. { }1,2, ,=  NN , { }1,2, ,=  KK  and 

{ }1 2, , ,=  NB B BB  denote the sets of SUs, channels and Base Stations (BS), respectively. The 
main differences of the obtained information for the PUs and SUs come from that PUs have 
the right for licensed spectrum access and also the channel state information, interference 
information from neighbor cells on the channels they allocated. The SUs need to carry on the 
spectrum sensing for available spectrums, which will leads to information loss of above 
signaling exchanges in the actual network. 

For simplify the analytical scenario, we assume that each SU has the ability to sense the 
spectrum hole exactly and measure interference over all channels. ,

Total
i kI  denotes the total 

noise-plus-interference level SU i  measures over channel k . This value includes the 
PU-to-SU interference, the SU-to-SU interference and the thermal noise. 

,1 ,2 ,[ , , , ] Total Total Total
i i i i KI I II , which is used by SU i  to perform channel selection, power control 

and rate allocation. 
We assume that the interferences between cell center SUs can be ignored and no interaction 

is needed. Because when the users located in the cell center, the interferences actually can be 
alleviated by two ways, which are the transmission power control/allocation policy and the 
relatively further distances from adjacent base stations. According to the definition of “cell 
edge” by the 3GPP, the 5% tile cell throughput CDF will be the cell edge user performance. In 
this article, the differences of the user received signals strength from the neighboring base 
stations will be the criteria of cell edge and cell center. If the differences of the user received 
signal strength are big than the threshold, the user will be regarded as the cell center. And vice 
versa, the users are regarded as the cell edge users. The criteria are also associated with the 
frequency reuse strategy.  

The transmission power vector of an SU i  in iB  over all channels is denoted as 

,1 ,2 ,, , , =  i i i iB B B B
i i i i KP P PP , where ,

iB
i kP  is the transmission power of SU i  over channel k . If 

channel k  belongs to SU i , , 0>iB
i kP ; otherwise , 0=iB

i kP . 

To ensure available spectrum sharing and consider practical deployment, we impose the 
following constraints: 

 
1) Maximum transmission power constraints: The total transmission power of an SU over 

all the selected channels should not exceed maxP , i.e., , max ,
∈

≤ ∀ ∈∑ i

i

B
i kk

P P i
F

N , where iF  

denotes the set of utilized channels of SU i . Here, we assume that the total power 
constraint is the same for all users. It is easy to extend the treatment to the case where maxP  
is user-dependent. 
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2) Power mask constraints: The transmission power of SU i  on channel k  should fulfill
, ≤iB k

i k maskP P , where k
maskP  is the power mask on channel k . The power mask is often 

specified by a radio management agent, e.g., the Federal Communications Commission 
(FCC). However, because the number of SUs that share a given channel varies in time 
and space, it is impractical to define an independent power mask. We use the vector 

1 2[ , , , ]=  K
mask mask mask maskP P PP  to denote the power mask on all channels. 

 
SUs are assumed to be either static or be moving slowly compared to the convergence time 

of the resource assignment algorithm. In addition, SUs are homogeneous, meaning that they 
follow the same operation rules and have the same system constraints.  

3. DSA Scheme Simulation 
In a CR network, each SU is interested in maximizing its own achievable rate. Such 
self-serving behavior can be modeled using game theory. Game theory analyzes the 
interactions of players in decision-making processes. Based on the aforementioned system 
model, a game can be formulated as follows: The players in this game are the SUs 

{ }1,2, ,=  NN , the strategy of each player is the transmission power vector , i.e., the strategy 

of SU i  is denoted by  ,1 ,2 ,, , , =  i i i iB B B B
i i i i KP P PP . The payoff of SU i  is the utility function iB

iU , 
which depends on the strategies of all players. The solution of the game is the NE. 
 

3.1 Utility Function 

In this game, the utility function of SU i  can be defined as the reward received by this SU 
from the network. This reward should depend on this SU’s action iB

iP  and the set of all other 
SUs’ action −

−
iB

iP , where 1 11
1 1 1, , , , ,− − +

− − +    i i i N
TB B B BB

i i i NP P P P P . The basic principle of defining a utility 
function is to characterize and resolve practical problems. A natural selection of the utility 
function of an SU i  is its transmission rate, which is taken as the channel capacity. SUs select 
their transmission powers to maximize their own utility functions, and under certain 
conditions, they eventually reach an NE after several iterations. Because of the 
non-cooperative nature of the game, each SU behaves selfishly. Thus the resulting NE may be 
far from the Pareto optimum [17]. To drive the NE towards the Pareto optimum boundary, we 
exploit a pricing function to coerce SUs into working in a cooperative manner. The utility 
function is shown as follows: 
 

, ,
, 2 , ,

, , ,
,

( ) log 1
η

∈ ∈

 
 

= + − 
+ +  

 
∑

i i

i i i i

j i

j j

B B
i k i kB B B B

i i k i k i kB B PR
j k j k k i k

B j B

P H
u P P

P H I N
B

P                                         (1) 

 
Where ,

iB
i kH  denotes the channel gain between SU i  and BS iB  over channelk, ,i kN  is the 

background noise over channel k , PR
kI  denotes the PU-to-SU interference, while η  is a 

protection factor, given as: 
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1

1
η

η

 ∉= 
≥

Adjacent
j iB B

else
                                                                              (2) 

 
It has the implication that the PU-to-SU interference and SU-to-PU interference are relevant 

(e.g., in a Time Division Duplex (TDD) system, they can be considered the same), η  gives the 
PU priority to avoid being severely interfered with by SUs, where Adjacent

iB  is iB ’s adjacent BSs. 

,
iB

i kP  denotes the pricing factor of an SU i  on channel k . In this paper, we define 
user-dependent pricing corresponding to different interference degrees and driving SUs to 
converge to efficient NE. In addition, this utility function is specialized for the uplink, When 
used in the downlink the interfering SUs’ channel gain ,

iB
j kH  should be transformed to ,

jB
i kH , 

which denotes the channel gain between interference BS to SU i . The same is with other terms 
in the discussion. 

 
Considering the priority of different SUs may be different, we define a weighted sum of all 

utilities for all SUs, shown as follows: 
 

,
1 1 1

max ( ) max ( )ω ω−
−

= = =

=∑ ∑ ∑i i i i i

N N K
B B B B B

i i i i i i i k
i i k

U u PP ,P                                                               (3) 

 
s.t.  
 
 , 0,≥ ∀ ∈ ∈iB

i kP i and kN K  

 , max ,
∈

≤ ∀ ∈ ∈∑ i

i

B
i kk

P P i and k
F

N K  

 , ,≤ ∀ ∈ ∈iB k
i k maskP P i and kN K  

 
where ωi  denotes the weight assigned to SU i , which can be explained in different ways (e.g., 
priority of SU i ). Based on the above utility definition and optimization objectives with 
corresponding constraints, the QoS of SUs will be guaranteed. 
 

3.2 Pricing function 
Pricing is an idea originating from economic, and always used to improve the efficiency of a 
NE [18] as well as mitigate interference [19]. Although an “optimal” pricing function may 
exist that allows the NE to converge to a Pareto-optimum solution, the search for such a 
pricing function generally requires global information and is difficult to implement. In this 
paper, we propose a user-dependent pricing function, which requires neighborhood 
interference information. Through pricing calculation and interaction, it can improve the NE 
and suppress interference among SUs. 
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We derive a linear pricing function by introducing the Lagrangian function for (3) satisfying 
Karush-Kuhn-Tucker (KKT) necessary conditions [6][19]. The pricing factor of SU i  is 
shown as follows: 
 

, , ,
,

, , , , ,

1
( )

ω
ω ∈ ∈

=
+

∑
j j j

i

j jAdjacent
j ji

B B B
j k j k i kB

i k j B BTotal Total
B B j Bi j k j k j k j k

P H H

I I P H
P                                                           (4) 

 
From the above pricing function, we can conclude that a higher pricing factor ,

iB
i kP  will 

prevent an SU i  from using a large transmission power on channel k . In order to get an 
optimal pricing function, an SU i  should obtain the transmission power ,

jB
j kP , the measured 

interference plus noise ,
Total
j kI  and the channel gain ,

jB
j kH  of its neighbor j  on channel k , so 

cooperation is required between SUs. The information can be exchanged through control 
signaling in a broadcast. 
 

3.3 Game analysis and algorithm 
From the aforementioned propositions, the players, strategy and playoffs are all specifically 

defined. By definition, the NE of a game is a strategy profile with the property that no player 
can increase his payoff by choosing a different action, given other players’ actions. In this case, 
the NE is obtained by using the best response function which is the most advantageous 
strategy of player given others’ strategies. The best response function of SU i  is given as: 
 

( ) arg max ( )−
− −=B P P ,Pi i i

Bi
i

B B B
i i i i i

P
U                                                                                 (5) 

 
The set 1 2[ , , , ]∗ ∗ ∗ ∗= P P P PN  denotes the NE of this game on power if and only if ( )∗ ∗

−=P Pi i iB , 
where ∗

−P i  denotes the set of the  best response of player j  for ≠j i .  
In view of the above, it is indicative that this is a strictly convex optimization problem with 

bounds on individual variables. The optimal solution 1 2[ , , , ]∗ ∗ ∗ ∗= P P P PN  can be derived by the 
method of Lagrange multipliers, for solving the problem of conditional extreme values. 
Specifically, without considering the priority of different SUs, this sequential algorithm is 
described as follows: 
 
maximize{ }1, 2, ,, ,...P P P  i i iB B B

k k N k  

, ,
, 2 , ,

, , ,
,

( ) log 1
η

∈ ∈

 
 

= + − 
+ +  

 
∑

i i

i i i i

j i

j j

B B
i k i kB B B B

i i k i k i kB B PR
j k j k k i k

B j B

P H
u P P

P H I N
P

B

 

s.t.  

, 0,≥ ∀ ∈ ∈iB
i kP i and kN K  
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, maxF
, N K

∈
≤ ∀ ∈ ∈∑ i

i

B
i kk

P P i and k  

, ,≤ ∀ ∈ ∈iB k
i k maskP P i and kN K                                                                                    (6) 

 
If there’s a solution to the game, it would be one that will achieve the NE. The following 

proposition shows that an NE solution always exists for the above game. 
Proposition: For any given and values, there is at least one NE solution for (6). 

 
Proof: The game in our setup can be shown to be a concave game if the following two 

properties are satisfied: 
 

1) the action space is a closed and bounded convex set; 
2) the utility function is concave over its strategy set. 

 
It is straightforward to show that the two properties are satisfied by the game. Because a 

concave game always admits at least one NE [20], the proposition follows immediately. 
Thus, (6) is a convex problem and it can be solved by the way of Lagrange multipliers. Then 

the Lagrangian of  (6) is given by 
 

max F
( , , , ) ( ) ( ) ( )γ γ

∈
= − + − + −∑ ∑ ∑

  
i

i

B k
i i i i i i mask ik

L x y z u x y x z P x P x                                                 (7) 

 
where ,= iB

i i kx P . Accordingly, 1( ,..., )=


Ny y y , z  and 1( ,..., )γ γ γ=


N  are the Lagrange multipliers, 

iy  and γ i  are non-negative real numbers, and z is real number. 
In order to solve the optimization problem and obtain the NE, we have to solve the 

following set of equations ∂ ∂ iL x  for all SUs mathematically. This is depicted as follows: 
 

,0,       = , 1, 2,...,∂
= =

∂
iB

i i k
i

L x P i N
x

                                                                                                   (8) 

 
Substituting Eq. (7) into (8), we get 

 
max F

( ( ))( )( )

( )
        

( )
     

     0

γ

γ

∈
∂ −∂∂∂

= − +
∂ ∂ ∂ ∂

∂ −
+

∂

∂
= − − −

∂
=

∑∑

∑

i
i

i

B
iki ii i

i i i i
k

i mask i

i
B
i i

i i
i

z P xy xu xL
x x x x

P x
x

u x
y z

x

                                                                                    (9) 

In addition, for the optimum solution of  ( )iB
i iu x , we have to determine the value of those 

Lagrange multipliers. They are depicted as follows: 
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 10,       = ,...,  ∂
=

∂ i N
i

L y y y
y

                                                                                              (10) 

 10,       = ,...,β β β
β
∂

=
∂ i N

i

L                                                                                              (11) 

 0∂
=

∂
L
z

                                                                                                                     (12) 

 
Using Eqs. (7), (10), (11) and (12), we get the value of  1( ,..., )=


Nx x x , 1( ,..., )=


Ny y y  and z . 

Substituting Eq. (1) and these values into Eq. (9), then 
 

,*
, , ,

,,

( )
ln 2( )

η
γ ∈ ∈

= − + +
+ + + ∑

B

i
j i

i
j j

B
Bi k B PR

i j k j k k i kB
B j Bi k i i

H
x P H I N

y zP
                                                      (13) 

 

where ,= iB
i i kx P , and *

ix is just the NE of the game. 

Furthermore, substituting Eq. (13) into (1), we get the maximum value of ,( )i iB B
i i ku P   for SU 

i on the channel k, which is the optimum solution of the problem. That is, 
 

*
, *

, 2 ,
, , ,

,

max ( ) log 1
η

∈ ∈

 
 

= + − 
+ +  

 
∑
B

i

i i i

j i

j j

B
i i kB B B

i i k i k iB B PR
j k j k k i k

B j B

x H
u P x

P H I N
P                                                           (14) 

 
Finally, substituting Eq. (14) into (5), we arrive at the best response function of SU i on the 

channel k, referring to Eq. (15). 
 

* *
, 2 , , , , ,

,
( ) arg max ( ) arg log 1 ( ) ( )η−

∈ ∈

   = = + + + −      
∑
B

B P ji i i i i

Bi
i j j

BB B B B BPR
i i i i k i i k j k j k k i k i k i

P B j B
u P x H P H I N xP               (15) 

 
According to real scenarios, by treating other SUs’ transmission as interference, the best 

response of SU i on channel k is given as follows: 
 

,
,

, , 0

1( )
Pλ−

 
= − 

+  
B P

k
mask

i i

PTotal
i k

i i k B B
i k i k

I
H                                                                                          (16) 

 
where [ ]b

ax , with >b a , denotes the Euclidean projection of x in the interval [ , ]a b , i.e., 
[ ] =b

ax a  if <x a , [ ] =b
ax x  if < <a x b , and [ ] =b

ax b  if >x b . λ  denotes the fixed water level, 
which is constrained by the total transmission power. ,

iB
i kP  contributes a user-dependent water 
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level, which is ultimately determined by the interference SU i  and its neighbors measured 
together. This user-dependent variable water level improves the efficiency of power allocation 
and spectrum utilization. 

We exploit a classical iterative algorithm to reach the NE. It can be generalized as follows: 
 
_______________________________________________________________________ 

Algorithm 
_______________________________________________________________________ 
0: Initialize , 0=iB

i kP , for all SUs on all channels. 

Initialize iterative count 1=j  
1: Repeat 
2: for 1=i  to N  SUs do 
3: for 1=k  to K  channels do 
4: Estimate the total interference plus noise level ,

Total
i kI  and channel gain ,

iB
i kH  

5: Calculate pricing factor ,
iB

i kP  

6: end for 
7: 1 11( ) ( ) ( 1) ( 1)( )

1 1 1( , , , , , )− + − −
− +=  P P P P Pi i i NB j B j B j B jB j

i i i i NB  
8: Transmission on selected channels 
9: end for 
10: 1= +j j  

11: if max>j Loop  or ( )( ) ( 1) ( 1) ε− −− ≤P P Pi i iB j B j B j
i i i  

12: end repeat 
_______________________________________________________________________ 

The convergence condition can be predefined as the maximum circle time maxLoop  or the 
terminating criteria ( )( ) ( 1) ( 1) ε− −− ≤P P Pi i iB j B j B j

i i i , where ε  is a small value (e.g., 5%). 

 

4. Performance Evaluation 

4.1 Parameter Setting 
In this section, we evaluate the performance of the proposed DSA scheme. We simulate this 
scheme in a multi-user cellular network with the specific parameter settings list as Table 1. 
There are 27 cells depolyed with Hexagonal grid. The parameters are in line with LTE 
requirement. Path loss and shadowing are both taken into account. Because the time scale of 
resource allocation is longer than that of fast fading, so it is reasonable to average the effect of 
fast fading. The interference model is mainly based on the LTE multi-cell scenario with 
homogeneous network deployment. The schemes compared are the SFR and FFR schemes 
introduced in the introduction and related works. 
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Table 1. Simulation Parameters and Setting 
Parameter Value 

Carrier frequency 2GHz 
System bandwidth 10MHz 

Cellular Layout Hexagonal grid, 27 cells 
Cell radius 1000m 

Distance-dependent path loss L=128.1 + 37.6log10(R),  
R in km 

Lognormal Shadowing  0 mean,  
8dB standard deviation 

BS transmit power 46dBm 
Link Adaptation Perfect 

Target BER 10-6 
Total sub-carriers 600 

Sub-carrier spacing 15 kHz 
White noise power density -174 dBm/Hz 

 

4.2 Simulation Results 
The simulation results are shown with the Fig. 2 to Fig. 5. Fig. 2 shows that the cell throughput 
of the DSA scheme is always larger than SFR and FFR schemes with different Frequency 
Reuse Factor (FRF). That is because the full frequency reuse leads to a more accessible 
frequency in cell edge under interference and total power constraints. Fig. 2 also shows that 
the improvement of a DSA scheme is relatively large when the user number is moderate, while 
it is relatively small when the user number is very small or large. The reason is that the 
cell-edge accessible frequency is sufficient with a small user number in SFR and FFR schemes, 
producing slight interference and leading to a high transmission rate. While, when the user 
number is large, the interference is severe, limiting the performance of the DSA scheme. This 
takes into account the mutual interference of SUs as pricings. Comparing these following 
simulation results, it’s obviously that the cell throughput decreases along with FRF. It results 
from the higher FRF, and means more available frequency in the cell center, which has a better 
channel quality and can produce higher throughput. 
 

 
(a) FRF=8/9                                                   (b) FRF=1/2 

 

Fig. 2. Cell Throughput with different FRF 
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Fig. 3 shows that the cell-edge average transmission rate of a DSA scheme is always better 
than SFR and FFR schemes with different FRF, because of the full frequency reuse and the 
interference information interactions of SUs in cell edge. Fig. 3 also shows that the 
improvement decreases as the user number increases, due to the interference worsening with 
more access users. Obviously, the average data bits increase as FRF decreases. Because 
smaller FRF leads to more available frequency in the cell edge. 

 
(a) FRF=8/9                                                      (b) FRF=1/2 

 
Fig. 3. Cell-edge Average transmission rate with different FRF 

 
Fig. 4 shows the CDF curves of users’ throughput of the three schemes with FRF=8/9. We 

can see that the DSA scheme is always better than SFR and FFR schemes, because the object 
of the proposed DSA scheme is to maximize the throughput of each SU in a cell edge. With the 
enhancement of the performance of the edge users, the whole network is encouraged. 

 
Fig. 4. CDF of users’ throughput with FRF=8/9 
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Fig. 5 shows the outage of users of a DSA scheme is always larger than SFR and FFR 
schemes with FRF=8/9, because the object of the DSA scheme is to maximize the utility of 
SUs. By the way of user-dependent water filling, users with better performance will be 
allocated higher power. As a result, the outage is higher than SFR and FFR schemes. Fig. 5 
also shows that the outage of a DSA scheme increases at first but then decreases. This is 
consequent to the feature of the water filling algorithm, which is stated above. 

 
Fig. 5. Outage of users with FRF=8/9 

5. Conclusion 
In this paper, a game theory based DSA scheme specialized for cellular network cell edge SUs 
is proposed, in which full frequency reuse is realized and inter-cell interference is mitigated 
according to SUs’ sensing, measurement and interaction. We define a utility function to 
maximize the transmission rate under the interference and total power constraints. A 
user-dependent pricing function is designed. We also propose a joint power/channel allocation 
algorithm that improves cell-edge user experience and network performance through setting 
user-dependent water filling levels relevant to user-dependent pricings. We compare it with 
SFR and FFR schemes. Simulation results show that the proposed scheme outperforms 
existing SFR and FFR schemes on cell throughput and cell-edge average data bits. The DSA 
scheme obviously improves cell-edge performance, spectrum utilization and spectrum 
efficiency. 
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