1 |
Xiao, H., Lu, M., Lin, T. Y., Chen, Z., Chen, G., Wang, W. C., Marin, T., Shentu, T. P., Wen, L., Gongol, B., Sun, W., Liang, X., Chen, J., Huang, H. D., Pedra, J. H., Johnson, D. A. and Shyy, J. Y. (2013) Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128, 632-642.
DOI
ScienceOn
|
2 |
Shi, Z. D. and Tarbell, J. M. (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 39, 1608-1619.
DOI
|
3 |
Tedgui, A. and Mallat, Z. (2001) Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 88, 877-887.
DOI
ScienceOn
|
4 |
Pidkovka, N. A., Cherepanova, O. A., Yoshida, T., Alexander, M. R., Deaton, R. A., Thomas, J. A., Leitinger, N. and Owens, G. K. (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res. 101, 792-801.
DOI
ScienceOn
|
5 |
Berliner, J. A. and Watson, A. D. (2005) A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 353, 9-11.
DOI
ScienceOn
|
6 |
Libby, P., Ridker, P. M. and Hansson, G. K. (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317-325.
DOI
ScienceOn
|
7 |
Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. and Michel, J. B. (2012) The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95, 194-204.
DOI
|
8 |
Johnson, J. L., Devel, L., Czarny, B., George, S. J., Jackson, C. L., Rogakos, V., Beau, F., Yiotakis, A., Newby, A. C. and Dive, V. (2011) A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol. 31, 528-535.
DOI
ScienceOn
|
9 |
Boyle, J. J., Weissberg, P. L. and Bennett, M. R. (2003) Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler. Thromb. Vasc. Biol. 23, 1553-1558.
DOI
ScienceOn
|
10 |
Gough, P. J., Gomez, I. G., Wille, P. T. and Raines, E. W. (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J. Clin. Invest. 116, 59-69.
|
11 |
Mehta, P. K. and Griendling, K. K. (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell. Physiol. 292, 82-97.
|
12 |
Williams, B. (2001) Angiotensin II and the pathophysiology of cardiovascular remodeling. Am. J. Cardiol. 87, 10-17.
DOI
ScienceOn
|
13 |
Ferrario, C. M. (2006) Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin Angiotensin Aldosterone Syst. 7, 3-14.
DOI
ScienceOn
|
14 |
Park, W. K., Regoli, D. and Rioux, F. (1973) Characterization of angiotensin receptors in vascular and intestinal smooth muscles. Br. J. Pharmacol. 48, 288-301.
DOI
|
15 |
Lee, D., Lee, K. H., Park, H., Kim, S. H., Jin, T., Cho, S., Chung, J. H., Lim, S. and Park, S. (2013) The effect of soluble RAGE on inhibition of angiotensin II-mediated atherosclerosis in apolipoprotein E deficient mice. PloS One 8, e69669.
DOI
ScienceOn
|
16 |
Doggrell, S. A. (2002) Angiotensin AT-1 receptor antagonism: complementary or alternative to ACE inhibition in cardiovascular and renal disease? Expert Opin. Pharmacother. 11, 1543-1556.
|
17 |
Cai, Q., Lanting, L. and Natarajan, R. (2004) Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis. American journal of physiology. Am. J. Physiol. Cell Physiol. 287, 707-714.
|
18 |
Rateri, D. L., Moorleghen, J. J., Knight, V., Balakrishnan, A., Howatt, D. A., Cassis, L. A. and Daugherty, A. (2012) Depletion of endothelial or smooth muscle cell-specific angiotensin II type 1a receptors does not influence aortic aneurysms or atherosclerosis in LDL receptor deficient mice. PloS One 7, e51483.
DOI
|
19 |
Rateri, D. L., Moorleghen, J. J., Balakrishnan, A., Owens, A. P. 3rd, Howatt, D. A., Subramanian, V., Poduri, A., Charnigo, R., Cassis, L. A. and Daugherty, A. (2011) Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneurysms in LDL receptor-/- mice. Circ. Res. 108, 574-581.
DOI
ScienceOn
|
20 |
Schmidt, B., Drexler, H. and Schieffer, B. (2004) Therapeutic effects of angiotensin (AT1) receptor antagonists: potential contribution of mechanisms other than AT1 receptor blockade. Am. J. Cardiovasc. Drugs. 4, 361-368.
DOI
ScienceOn
|
21 |
Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., Elliston, K., Stern, D. and Shaw, A. (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267, 14998-15004.
|
22 |
Kirstein, M., Brett, J., Radoff, S., Ogawa, S., Stern, D. and Vlassara, H. (1990) Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc. Natl. Acad. Sci. U. S. A. 87, 9010-9014.
DOI
ScienceOn
|
23 |
Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J. X., Nagashima, M., Lundh, E. R., Vijay, S., Nitecki, D., Morser, J., Stern, D. and Schmidt, A. M. (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270, 25752-25761.
DOI
ScienceOn
|
24 |
Heizmann, C. W., Ackermann, G. E. and Galichet, A. (2007) Pathologies involving the S100 proteins and RAGE. Subcell. Biochem. 45, 93-138.
DOI
|
25 |
Brett, J., Schmidt, A. M., Yan, S. D., Zou, Y. S., Weidman, E., Pinsky, D., Nowygrod, R., Neeper, M., Przysiecki, C., Shaw, A., Migheli, A. and Stern, D. (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 143, 1699-1712.
|
26 |
Esposito, C., Gerlach, H., Brett, J., Stern, D. and Vlassara, H. (1989) Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J. Exp. Med. 170, 1387-1407.
DOI
ScienceOn
|
27 |
Hayakawa, E., Yoshimoto, T., Sekizawa, N., Sugiyama, T. and Hirata, Y. (2012) Overexpression of receptor for advanced glycation end products induces monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cell line. J. Atheroscler. Thromb. 19, 13-22.
DOI
|
28 |
Bae, J.-S. and Rezaie, A. R. (2013) Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Rep. 46, 544-549.
과학기술학회마을
DOI
ScienceOn
|
29 |
Jaulmes, A., Thierry, S., Janvier, B., Raymondjean, M. and Marechal, V. (2006) Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta. FASEB J. 20, 1727-1729.
DOI
ScienceOn
|
30 |
Lippai, D., Bala, S., Petrasek, J., Csak, T., Levin, I., Kurt-Jones, E. A. and Szabo, G. (2013) Alcohol-induced IL-1beta in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J. leukoc. Biol. 94, 171-182.
DOI
|
31 |
Kokkola, R., Andersson, A., Mullins, G., Ostberg, T., Treutiger, C. J., Arnold, B., Nawroth, P., Andersson, U., Harris, R. A. and Harris, H. E. (2005) RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J. Immunol. 61, 1-9.
DOI
ScienceOn
|
32 |
Toure, F., Fritz, G., Li, Q., Rai, V., Daffu, G., Zou, Y. S., Rosario, R., Ramasamy, R., Alberts, A. S., Yan, S. F. and Schmidt, A. M. (2012) Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. Circ. Res. 110, 1279-1293.
DOI
ScienceOn
|
33 |
Menini, S., Iacobini, C., Ricci, C., Blasetti Fantauzzi, C., Salvi, L., Pesce, C. M., Relucenti, M., Familiari, G., Taurino, M. and Pugliese, G. (2013) The galectin-3/RAGE dyad modulatesvascular osteogenesis in atherosclerosis. Cardiovasc. Res. 100, 472-480.
DOI
ScienceOn
|
34 |
Kowala, M. C., Recce, R., Beyer, S., Gu, C. and Valentine, M. (2000) Characterization of atherosclerosis in LDL receptor knockout mice: macrophage accumulation correlates with rapid and sustained expression of aortic MCP-1/JE. Atherosclerosis 149, 323-330.
DOI
ScienceOn
|
35 |
Kim, J. K., Park, S., Lee, M. J., Song, Y. R., Han, S. H., Kim, S. G., Kang, S. W., Choi, K. H., Kim, H. J. and Yoo, T. H. (2012) Plasma levels of soluble receptor for advanced glycation end products (sRAGE) and proinflammatory ligand for RAGE (EN-RAGE) are associated with carotid atherosclerosis in patients with peritoneal dialysis. Atherosclerosis 220, 208-214.
DOI
ScienceOn
|
36 |
Goldstein, J. L. and Brown, M. S. (1975) Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch. Pathol. 99, 181-184.
|
37 |
Nestel, P. J. (1980) Lipoprotein protein receptors and their relation to atherosclerosis. Circ. Res. 46, I106-109.
|
38 |
Basak, J. M., Verghese, P. B., Yoon, H., Kim, J. and Holtzman, D. M. (2012) Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Abeta uptake and degradation by astrocytes. J. Biol. Chem. 287, 13959-13971.
DOI
|
39 |
Naderi, G. A., Asgary, S., Sarraf-Zadegan, N. and Shirvany, H. (2003) Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol. Cell. Biochem. 246, 193-196.
DOI
ScienceOn
|
40 |
Basu, S. K., Brown, M. S., Ho, Y. K. and Goldstein, J. L. (1979) Degradation of low density lipoprotein . dextran sulfate complexes associated with deposition of cholesteryl esters in mouse macrophages. J. Biol. Chem. 254, 7141-7146.
|
41 |
Hofnagel, O., Luechtenborg, B., Eschert, H., Weissen-Plenz, G., Severs, N. J. and Robenek, H. (2006) Pravastatin inhibits expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in Watanabe heritable hyperlipidemic rabbits: a new pleiotropic effect of statins. Arterioscler. Thromb. Vasc. Biol. 26, 604-610.
|
42 |
Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T. and Masaki, T. (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73-77.
DOI
ScienceOn
|
43 |
Hofnagel, O., Luechtenborg, B., Stolle, K., Lorkowski, S., Eschert, H., Plenz, G. and Robenek, H. (2004) Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 1789-1795.
DOI
ScienceOn
|
44 |
Limor, R., Kaplan, M., Sawamura, T., Sharon, O., Keidar, S., Weisinger, G., Knoll, E., Naidich, M. and Stern, N. (2005) Angiotensin II increases the expression of lectin-like oxidized low-density lipoprotein receptor-1 in human vascular smooth muscle cells via a lipoxygenase-dependent pathway. Am. J. Hypertens. 18, 299-307.
DOI
ScienceOn
|
45 |
Morawietz, H. (2007) LOX-1 and atherosclerosis: proof of concept in LOX-1-knockout mice. Circ. Res. 100, 1534-1536.
DOI
ScienceOn
|
46 |
Cole, J. E., Georgiou, E. and Monaco, C. (2010) The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm. 2010, 393946.
|
47 |
Edfeldt, K., Swedenborg, J., Hansson, G. K. and Yan, Z. Q. (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158-1161.
|
48 |
Curtiss, L. K. and Tobias, P. S. (2009) Emerging role of Toll-like receptors in atherosclerosis. J. Lipid Res. 50 (Suppl), 340-345.
DOI
|
49 |
Schoneveld, A. H., Oude Nijhuis, M. M., van Middelaar, B., Laman, J. D., de Kleijn, D. P. and Pasterkamp, G. (2005) Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development. Cardiovas. Res. 66, 162-169.
DOI
ScienceOn
|
50 |
Yang, X., Coriolan, D., Schultz, K., Golenbock, D. T. and Beasley, D. (2005) Toll-like receptor 2 mediates persistent chemokine release by Chlamydia pneumoniae-infected vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 25, 2308-2314.
DOI
ScienceOn
|
51 |
Madan, M. and Amar, S. (2008) Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PloS One 3, e3204.
DOI
ScienceOn
|
52 |
de Graaf, R., Kloppenburg, G., Kitslaar, P. J., Bruggeman, C. A. and Stassen, F. (2006) Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4. Microbes Infect. 8, 1859-1865.
DOI
ScienceOn
|
53 |
Lee, G. L., Chang, Y. W., Wu, J. Y., Wu, M. L., Wu, K. K., Yet, S. F. and Kuo, C. C. (2012) TLR 2 induces vascular smooth muscle cell migration through cAMP response element-binding protein-mediated interleukin-6 production. Arterioscler. Thromb. Vasc. Biol. 32, 2751-2760.
DOI
|
54 |
Lee, J. H., Joo, J. H., Kim, J., Lim, H. J., Kim, S., Curtiss, L., Seong, J. K., Cui, W., Yabe-Nishimura, C. and Bae, Y. S. (2013) Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovas. Res. 99, 483-493.
DOI
ScienceOn
|
55 |
Yang, X., Coriolan, D., Murthy, V., Schultz, K., Golenbock, D. T. and Beasley, D. (2005) Proinflammatory phenotype of vascular smooth muscle cells: role of efficient Toll-like receptor 4 signaling. Am. J. Physiol. Heart. Circ. Physiol. 289, 1069-1076.
DOI
ScienceOn
|
56 |
Delbridge, L. M. and O'Riordan, M. X. (2007) Innate recognition of intracellular bacteria. Curr. Opin. Immunol. 19, 10-16.
DOI
ScienceOn
|
57 |
Heo, S. K., Yun, H. J., Noh, E. K., Park, W. H. and Park, S. D. (2008) LPS induces inflammatory responses in human aortic vascular smooth muscle cells via Toll-like receptor 4 expression and nitric oxide production. Immunol. Lett. 120, 57-64.
DOI
ScienceOn
|
58 |
Li, H., Xu, H. and Sun, B. (2012) Lipopolysaccharide regulates MMP-9 expression through TLR4/NF-kappaB signaling in human arterial smooth muscle cells. Mol. Med. Rep. 6, 774-778.
DOI
|
59 |
Hayashi, C., Papadopoulos, G., Gudino, C. V., Weinberg, E. O., Barth, K. R., Madrigal, A. G., Chen, Y., Ning, H., LaValley, M., Gibson, F. C. 3rd, Hamilton, J. A. and Genco, C. A. (2012) Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. J. Immunol. 189, 3681-3688.
DOI
|
60 |
Bracey, N. A., Beck, P. L., Muruve, D. A., Hirota, S. A., Guo, J., Jabagi, H., Wright, J. R. Jr., Macdonald, J. A., Lees-Miller, J. P., Roach, D., Semeniuk, L. M. and Duff, H. J. (2013) The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1beta. Exp. Physiol. 98, 462-472.
DOI
ScienceOn
|
61 |
Srinivasula, S. M., Poyet, J. L., Razmara, M., Datta, P., Zhang, Z. and Alnemri, E. S. (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem. 277, 21119-21122.
DOI
ScienceOn
|
62 |
Behrends, C., Sowa, M. E., Gygi, S. P. and Harper, J. W. (2010) Network organization of the human autophagy system. Nature 466, 68-76.
DOI
ScienceOn
|
63 |
Li, Y., Xu, S., Jiang, B., Cohen, R. A. and Zang, M. (2013) Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PloS One 8, e67532.
DOI
|
64 |
Shi, C. S., Shenderov, K., Huang, N. N., Kabat, J., Abu-Asab, M., Fitzgerald, K. A., Sher, A. and Kehrl, J. H. (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255-263.
DOI
ScienceOn
|
65 |
Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., Lam, H. C., Englert, J. A., Rabinovitch, M., Cernadas, M., Kim, H. P., Fitzgerald, K. A., Ryter, S. W. and Choi, A. M. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222-230.
|
66 |
Zuurbier, C. J., Jong, W. M., Eerbeek, O., Koeman, A., Pulskens, W. P., Butter, L. M., Leemans, J. C. and Hollmann, M. W. (2012) Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling. PloS One 7, e40643.
DOI
|
67 |
Menu, P., Pellegrin, M., Aubert, J. F., Bouzourene, K., Tardivel, A., Mazzolai, L. and Tschopp, J. (2011) Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2, e137.
DOI
ScienceOn
|
68 |
Qiao, Y., Wang, P., Qi, J., Zhang, L. and Gao, C. (2012) TLR-induced NF-kappaB activation regulates NLRP3 expression in murine macrophages. FEBS Lett. 586, 1022-1026.
DOI
ScienceOn
|
69 |
Sun, Y. and Chen, X. (2011) Ox-LDL-induced LOX-1 expression in vascular smooth muscle cells: role of reactive oxygen species. Funda. Clin. Pharmacol. 25, 572-579.
DOI
ScienceOn
|
70 |
Hudson, B. I., Bucciarelli, L. G., Wendt, T., Sakaguchi, T., Lalla, E., Qu, W., Lu, Y., Lee, L., Stern, D. M., Naka, Y., Ramasamy, R., Yan, S. D., Yan, S. F., D'Agati, V. and Schmidt, A. M. (2003) Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch. Biochem. Biophys. 419, 80-88.
DOI
ScienceOn
|
71 |
Shimabukuro, M., Hirata, Y., Tabata, M., Dagvasumberel, M., Sato, H., Kurobe, H., Fukuda, D., Soeki, T., Kitagawa, T., Takanashi, S. and Sata, M. (2013) Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 33, 1077-1084.
DOI
ScienceOn
|