Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.1.285

Role of vascular smooth muscle cell in the inflammation of atherosclerosis  

Lim, Soyeon (Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine)
Park, Sungha (Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine)
Publication Information
BMB Reports / v.47, no.1, 2014 , pp. 1-7 More about this Journal
Abstract
Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.
Keywords
Atherosclerosis; Membrane receptor; Smooth muscle cell; Vascular inflammation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Xiao, H., Lu, M., Lin, T. Y., Chen, Z., Chen, G., Wang, W. C., Marin, T., Shentu, T. P., Wen, L., Gongol, B., Sun, W., Liang, X., Chen, J., Huang, H. D., Pedra, J. H., Johnson, D. A. and Shyy, J. Y. (2013) Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128, 632-642.   DOI   ScienceOn
2 Shi, Z. D. and Tarbell, J. M. (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 39, 1608-1619.   DOI
3 Tedgui, A. and Mallat, Z. (2001) Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 88, 877-887.   DOI   ScienceOn
4 Pidkovka, N. A., Cherepanova, O. A., Yoshida, T., Alexander, M. R., Deaton, R. A., Thomas, J. A., Leitinger, N. and Owens, G. K. (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res. 101, 792-801.   DOI   ScienceOn
5 Berliner, J. A. and Watson, A. D. (2005) A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 353, 9-11.   DOI   ScienceOn
6 Libby, P., Ridker, P. M. and Hansson, G. K. (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317-325.   DOI   ScienceOn
7 Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. and Michel, J. B. (2012) The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95, 194-204.   DOI
8 Boyle, J. J., Weissberg, P. L. and Bennett, M. R. (2003) Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler. Thromb. Vasc. Biol. 23, 1553-1558.   DOI   ScienceOn
9 Gough, P. J., Gomez, I. G., Wille, P. T. and Raines, E. W. (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J. Clin. Invest. 116, 59-69.
10 Johnson, J. L., Devel, L., Czarny, B., George, S. J., Jackson, C. L., Rogakos, V., Beau, F., Yiotakis, A., Newby, A. C. and Dive, V. (2011) A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol. 31, 528-535.   DOI   ScienceOn
11 Mehta, P. K. and Griendling, K. K. (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell. Physiol. 292, 82-97.
12 Williams, B. (2001) Angiotensin II and the pathophysiology of cardiovascular remodeling. Am. J. Cardiol. 87, 10-17.   DOI   ScienceOn
13 Ferrario, C. M. (2006) Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin Angiotensin Aldosterone Syst. 7, 3-14.   DOI   ScienceOn
14 Park, W. K., Regoli, D. and Rioux, F. (1973) Characterization of angiotensin receptors in vascular and intestinal smooth muscles. Br. J. Pharmacol. 48, 288-301.   DOI
15 Lee, D., Lee, K. H., Park, H., Kim, S. H., Jin, T., Cho, S., Chung, J. H., Lim, S. and Park, S. (2013) The effect of soluble RAGE on inhibition of angiotensin II-mediated atherosclerosis in apolipoprotein E deficient mice. PloS One 8, e69669.   DOI   ScienceOn
16 Cai, Q., Lanting, L. and Natarajan, R. (2004) Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis. American journal of physiology. Am. J. Physiol. Cell Physiol. 287, 707-714.
17 Rateri, D. L., Moorleghen, J. J., Knight, V., Balakrishnan, A., Howatt, D. A., Cassis, L. A. and Daugherty, A. (2012) Depletion of endothelial or smooth muscle cell-specific angiotensin II type 1a receptors does not influence aortic aneurysms or atherosclerosis in LDL receptor deficient mice. PloS One 7, e51483.   DOI
18 Rateri, D. L., Moorleghen, J. J., Balakrishnan, A., Owens, A. P. 3rd, Howatt, D. A., Subramanian, V., Poduri, A., Charnigo, R., Cassis, L. A. and Daugherty, A. (2011) Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneurysms in LDL receptor-/- mice. Circ. Res. 108, 574-581.   DOI   ScienceOn
19 Doggrell, S. A. (2002) Angiotensin AT-1 receptor antagonism: complementary or alternative to ACE inhibition in cardiovascular and renal disease? Expert Opin. Pharmacother. 11, 1543-1556.
20 Schmidt, B., Drexler, H. and Schieffer, B. (2004) Therapeutic effects of angiotensin (AT1) receptor antagonists: potential contribution of mechanisms other than AT1 receptor blockade. Am. J. Cardiovasc. Drugs. 4, 361-368.   DOI   ScienceOn
21 Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., Elliston, K., Stern, D. and Shaw, A. (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267, 14998-15004.
22 Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J. X., Nagashima, M., Lundh, E. R., Vijay, S., Nitecki, D., Morser, J., Stern, D. and Schmidt, A. M. (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270, 25752-25761.   DOI   ScienceOn
23 Heizmann, C. W., Ackermann, G. E. and Galichet, A. (2007) Pathologies involving the S100 proteins and RAGE. Subcell. Biochem. 45, 93-138.   DOI
24 Brett, J., Schmidt, A. M., Yan, S. D., Zou, Y. S., Weidman, E., Pinsky, D., Nowygrod, R., Neeper, M., Przysiecki, C., Shaw, A., Migheli, A. and Stern, D. (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 143, 1699-1712.
25 Kirstein, M., Brett, J., Radoff, S., Ogawa, S., Stern, D. and Vlassara, H. (1990) Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc. Natl. Acad. Sci. U. S. A. 87, 9010-9014.   DOI   ScienceOn
26 Esposito, C., Gerlach, H., Brett, J., Stern, D. and Vlassara, H. (1989) Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J. Exp. Med. 170, 1387-1407.   DOI   ScienceOn
27 Hayakawa, E., Yoshimoto, T., Sekizawa, N., Sugiyama, T. and Hirata, Y. (2012) Overexpression of receptor for advanced glycation end products induces monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cell line. J. Atheroscler. Thromb. 19, 13-22.   DOI
28 Jaulmes, A., Thierry, S., Janvier, B., Raymondjean, M. and Marechal, V. (2006) Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta. FASEB J. 20, 1727-1729.   DOI   ScienceOn
29 Lippai, D., Bala, S., Petrasek, J., Csak, T., Levin, I., Kurt-Jones, E. A. and Szabo, G. (2013) Alcohol-induced IL-1beta in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J. leukoc. Biol. 94, 171-182.   DOI
30 Bae, J.-S. and Rezaie, A. R. (2013) Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Rep. 46, 544-549.   과학기술학회마을   DOI   ScienceOn
31 Kokkola, R., Andersson, A., Mullins, G., Ostberg, T., Treutiger, C. J., Arnold, B., Nawroth, P., Andersson, U., Harris, R. A. and Harris, H. E. (2005) RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J. Immunol. 61, 1-9.   DOI   ScienceOn
32 Toure, F., Fritz, G., Li, Q., Rai, V., Daffu, G., Zou, Y. S., Rosario, R., Ramasamy, R., Alberts, A. S., Yan, S. F. and Schmidt, A. M. (2012) Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. Circ. Res. 110, 1279-1293.   DOI   ScienceOn
33 Menini, S., Iacobini, C., Ricci, C., Blasetti Fantauzzi, C., Salvi, L., Pesce, C. M., Relucenti, M., Familiari, G., Taurino, M. and Pugliese, G. (2013) The galectin-3/RAGE dyad modulatesvascular osteogenesis in atherosclerosis. Cardiovasc. Res. 100, 472-480.   DOI   ScienceOn
34 Kim, J. K., Park, S., Lee, M. J., Song, Y. R., Han, S. H., Kim, S. G., Kang, S. W., Choi, K. H., Kim, H. J. and Yoo, T. H. (2012) Plasma levels of soluble receptor for advanced glycation end products (sRAGE) and proinflammatory ligand for RAGE (EN-RAGE) are associated with carotid atherosclerosis in patients with peritoneal dialysis. Atherosclerosis 220, 208-214.   DOI   ScienceOn
35 Goldstein, J. L. and Brown, M. S. (1975) Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch. Pathol. 99, 181-184.
36 Nestel, P. J. (1980) Lipoprotein protein receptors and their relation to atherosclerosis. Circ. Res. 46, I106-109.
37 Kowala, M. C., Recce, R., Beyer, S., Gu, C. and Valentine, M. (2000) Characterization of atherosclerosis in LDL receptor knockout mice: macrophage accumulation correlates with rapid and sustained expression of aortic MCP-1/JE. Atherosclerosis 149, 323-330.   DOI   ScienceOn
38 Basak, J. M., Verghese, P. B., Yoon, H., Kim, J. and Holtzman, D. M. (2012) Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Abeta uptake and degradation by astrocytes. J. Biol. Chem. 287, 13959-13971.   DOI
39 Naderi, G. A., Asgary, S., Sarraf-Zadegan, N. and Shirvany, H. (2003) Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol. Cell. Biochem. 246, 193-196.   DOI   ScienceOn
40 Basu, S. K., Brown, M. S., Ho, Y. K. and Goldstein, J. L. (1979) Degradation of low density lipoprotein . dextran sulfate complexes associated with deposition of cholesteryl esters in mouse macrophages. J. Biol. Chem. 254, 7141-7146.
41 Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T. and Masaki, T. (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73-77.   DOI   ScienceOn
42 Hofnagel, O., Luechtenborg, B., Stolle, K., Lorkowski, S., Eschert, H., Plenz, G. and Robenek, H. (2004) Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 1789-1795.   DOI   ScienceOn
43 Limor, R., Kaplan, M., Sawamura, T., Sharon, O., Keidar, S., Weisinger, G., Knoll, E., Naidich, M. and Stern, N. (2005) Angiotensin II increases the expression of lectin-like oxidized low-density lipoprotein receptor-1 in human vascular smooth muscle cells via a lipoxygenase-dependent pathway. Am. J. Hypertens. 18, 299-307.   DOI   ScienceOn
44 Hofnagel, O., Luechtenborg, B., Eschert, H., Weissen-Plenz, G., Severs, N. J. and Robenek, H. (2006) Pravastatin inhibits expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in Watanabe heritable hyperlipidemic rabbits: a new pleiotropic effect of statins. Arterioscler. Thromb. Vasc. Biol. 26, 604-610.
45 Morawietz, H. (2007) LOX-1 and atherosclerosis: proof of concept in LOX-1-knockout mice. Circ. Res. 100, 1534-1536.   DOI   ScienceOn
46 Cole, J. E., Georgiou, E. and Monaco, C. (2010) The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm. 2010, 393946.
47 Edfeldt, K., Swedenborg, J., Hansson, G. K. and Yan, Z. Q. (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158-1161.
48 Curtiss, L. K. and Tobias, P. S. (2009) Emerging role of Toll-like receptors in atherosclerosis. J. Lipid Res. 50 (Suppl), 340-345.   DOI
49 Yang, X., Coriolan, D., Schultz, K., Golenbock, D. T. and Beasley, D. (2005) Toll-like receptor 2 mediates persistent chemokine release by Chlamydia pneumoniae-infected vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 25, 2308-2314.   DOI   ScienceOn
50 Schoneveld, A. H., Oude Nijhuis, M. M., van Middelaar, B., Laman, J. D., de Kleijn, D. P. and Pasterkamp, G. (2005) Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development. Cardiovas. Res. 66, 162-169.   DOI   ScienceOn
51 Madan, M. and Amar, S. (2008) Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PloS One 3, e3204.   DOI   ScienceOn
52 de Graaf, R., Kloppenburg, G., Kitslaar, P. J., Bruggeman, C. A. and Stassen, F. (2006) Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4. Microbes Infect. 8, 1859-1865.   DOI   ScienceOn
53 Lee, G. L., Chang, Y. W., Wu, J. Y., Wu, M. L., Wu, K. K., Yet, S. F. and Kuo, C. C. (2012) TLR 2 induces vascular smooth muscle cell migration through cAMP response element-binding protein-mediated interleukin-6 production. Arterioscler. Thromb. Vasc. Biol. 32, 2751-2760.   DOI
54 Lee, J. H., Joo, J. H., Kim, J., Lim, H. J., Kim, S., Curtiss, L., Seong, J. K., Cui, W., Yabe-Nishimura, C. and Bae, Y. S. (2013) Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovas. Res. 99, 483-493.   DOI   ScienceOn
55 Yang, X., Coriolan, D., Murthy, V., Schultz, K., Golenbock, D. T. and Beasley, D. (2005) Proinflammatory phenotype of vascular smooth muscle cells: role of efficient Toll-like receptor 4 signaling. Am. J. Physiol. Heart. Circ. Physiol. 289, 1069-1076.   DOI   ScienceOn
56 Heo, S. K., Yun, H. J., Noh, E. K., Park, W. H. and Park, S. D. (2008) LPS induces inflammatory responses in human aortic vascular smooth muscle cells via Toll-like receptor 4 expression and nitric oxide production. Immunol. Lett. 120, 57-64.   DOI   ScienceOn
57 Li, H., Xu, H. and Sun, B. (2012) Lipopolysaccharide regulates MMP-9 expression through TLR4/NF-kappaB signaling in human arterial smooth muscle cells. Mol. Med. Rep. 6, 774-778.   DOI
58 Hayashi, C., Papadopoulos, G., Gudino, C. V., Weinberg, E. O., Barth, K. R., Madrigal, A. G., Chen, Y., Ning, H., LaValley, M., Gibson, F. C. 3rd, Hamilton, J. A. and Genco, C. A. (2012) Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. J. Immunol. 189, 3681-3688.   DOI
59 Delbridge, L. M. and O'Riordan, M. X. (2007) Innate recognition of intracellular bacteria. Curr. Opin. Immunol. 19, 10-16.   DOI   ScienceOn
60 Bracey, N. A., Beck, P. L., Muruve, D. A., Hirota, S. A., Guo, J., Jabagi, H., Wright, J. R. Jr., Macdonald, J. A., Lees-Miller, J. P., Roach, D., Semeniuk, L. M. and Duff, H. J. (2013) The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1beta. Exp. Physiol. 98, 462-472.   DOI   ScienceOn
61 Srinivasula, S. M., Poyet, J. L., Razmara, M., Datta, P., Zhang, Z. and Alnemri, E. S. (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem. 277, 21119-21122.   DOI   ScienceOn
62 Behrends, C., Sowa, M. E., Gygi, S. P. and Harper, J. W. (2010) Network organization of the human autophagy system. Nature 466, 68-76.   DOI   ScienceOn
63 Shi, C. S., Shenderov, K., Huang, N. N., Kabat, J., Abu-Asab, M., Fitzgerald, K. A., Sher, A. and Kehrl, J. H. (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255-263.   DOI   ScienceOn
64 Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., Lam, H. C., Englert, J. A., Rabinovitch, M., Cernadas, M., Kim, H. P., Fitzgerald, K. A., Ryter, S. W. and Choi, A. M. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222-230.
65 Zuurbier, C. J., Jong, W. M., Eerbeek, O., Koeman, A., Pulskens, W. P., Butter, L. M., Leemans, J. C. and Hollmann, M. W. (2012) Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling. PloS One 7, e40643.   DOI
66 Li, Y., Xu, S., Jiang, B., Cohen, R. A. and Zang, M. (2013) Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PloS One 8, e67532.   DOI
67 Menu, P., Pellegrin, M., Aubert, J. F., Bouzourene, K., Tardivel, A., Mazzolai, L. and Tschopp, J. (2011) Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2, e137.   DOI   ScienceOn
68 Qiao, Y., Wang, P., Qi, J., Zhang, L. and Gao, C. (2012) TLR-induced NF-kappaB activation regulates NLRP3 expression in murine macrophages. FEBS Lett. 586, 1022-1026.   DOI   ScienceOn
69 Hudson, B. I., Bucciarelli, L. G., Wendt, T., Sakaguchi, T., Lalla, E., Qu, W., Lu, Y., Lee, L., Stern, D. M., Naka, Y., Ramasamy, R., Yan, S. D., Yan, S. F., D'Agati, V. and Schmidt, A. M. (2003) Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch. Biochem. Biophys. 419, 80-88.   DOI   ScienceOn
70 Sun, Y. and Chen, X. (2011) Ox-LDL-induced LOX-1 expression in vascular smooth muscle cells: role of reactive oxygen species. Funda. Clin. Pharmacol. 25, 572-579.   DOI   ScienceOn
71 Shimabukuro, M., Hirata, Y., Tabata, M., Dagvasumberel, M., Sato, H., Kurobe, H., Fukuda, D., Soeki, T., Kitagawa, T., Takanashi, S. and Sata, M. (2013) Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 33, 1077-1084.   DOI   ScienceOn