Browse > Article
http://dx.doi.org/10.7779/JKSNT.2012.32.3.263

Assessing the Nano-Dynamics of the Cell Surface  

Bae, Chil-Man (Department of Physiology and Biophysics, State University of New York)
Park, Ik-Keun (Mechanical Engineering, Seoul National University of Technology)
Butler, Peter J. (Department of Bioengineering, The Pennsylvania State University)
Publication Information
Abstract
It is important to know the mechanism of cell membrane fluctuation because it can be readout for the nanomechanical interaction between cytoskeleton and plasma membrane. Traditional techniques, however, have drawbacks such as probe contact with the cell surface, complicate analysis, and limit spatial and temporal resolution. In this study, we developed a new system for non-contact measurement of nano-scale localized-cell surface dynamics using modified-scanning ion-conductance microscopy. With 2 nm resolution, we determined that endothelial cells have local membrane fluctuations of ~20 nm, actin depolymerization causes increase in fluctuation amplitude, and ATP depletion abolishes all membrane fluctuations.
Keywords
Membrane Fluctuation; Scanning Ion Conductance Microscopy; Micropipette; Actin Depolimerization; Cell Surface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg and M. Käll, "A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells," Lab Chip, Vol. 5, pp. 431-436 (2005)   DOI   ScienceOn
2 M. Miragoli, A. Moshkov, P. Novak, A. Shevchuk, V. O. Nikolaev, I. El-Hamamsy, C. M. Potter, P. Wright, S. H. Kadir, A. R. Lyon, J. A. Mitchell, A. H. Chester, D. Klenerman, M. J. Lab, Y. E. Korchev, S. E. Harding and J. Gorelik, "Scanning ion conductance microscopy: a convergent high-resolution technology for multiparametric analysis of living cardiovascular cells," J. R. Soc. Interface, Vol. 8, pp. 913-925 (2011)   DOI   ScienceOn
3 C. Bae and P. J. Butler, "Automated single-cell electroporation," Biotechniques, Vol. 41, pp. 399-400 (2006)   DOI
4 D. E. Fuentes, C. Bae and P. J. Butler, "Focal adhesion induction at the tip of a functionalized nanoelectrode," Cell Mol Bioeng., Vol. 4, pp. 616-626 (2011)   DOI   ScienceOn
5 C. Bae and P. J. Butler, "Finite element analysis of microelectrotension of cell membranes," Biomech Model Mechanobiol., Vol. 7, pp. 379-386 (2008)   DOI
6 B. Alberts, D. Bray, J. Lewis, M. Raff and K. Roberts, "Molecular Biology of the Cell," Garland Publishing, New York, USA (1994)
7 S. Tuvia, S. V. Levin and R. Korenstein, "Oxygenation-deoxygenation cycle of erythrocytes modulates submicron cell membrane fluctuations," Biophys. J., Vol. 63 pp. 599-602 (1992)   DOI   ScienceOn
8 N. S. Gov and S. A. Safran, "Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects," Biophys. J., Vol. 88, pp. 1859-1874 (2005)   DOI   ScienceOn
9 M. Murrell, L. L. Pontani, K. Guevorkian, D. Cuvelier, P. Nassoy and C. Sykes, "Preading dynamics of biomimetic actin cortices," Biophys J., Vol. 100, pp. 1400-1409 (2011)   DOI   ScienceOn
10 T. Auth, S. A. Safran and N. S. Gov, "Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation," N. J. Phys, USA (2007)
11 N. Gov, A.G. Zilman and S. Safran, "Cytoskeleton confinement and tension of red blood cell membranes," Phys. Rev. Lett., Vol. 90, p. 228101 (2003)   DOI   ScienceOn
12 S. Rochal and V. L. Lorman, "Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells," Phys. Rev. Lett. Vol. 96, p. 248102 (2006)   DOI   ScienceOn
13 R. M. Hochmuth, "Measuring the mechanical properties of individual human blood cells," J Biomech Eng., Vol. 115, pp. 515-519 (1993)   DOI   ScienceOn
14 T. Betz, M. Lenz, J. F. Joanny and C. Sykes, "ATP-dependent mechanics of red blood cells," Proc Natl Acad Sci., Vol. 106, pp. 15320-15325 (2009)   DOI   ScienceOn
15 Y. Z. Yoon, H. Hong, A. Brown, D. C. Kim, D. J. Kang, V. L. Lew and P. Cicute, "Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level," Biophys J., Vol. 97, pp. 1606-1615 (2009)   DOI   ScienceOn
16 F. Brochard and J. F. Lennon, "Frequency spectrum of the flicker phenomenon in erythrocytes," J. Phys. (Fr), Vol. 36, pp.1035-1047 (1975)   DOI
17 E. Hecht, S. M. Usmani, S. Albrecht, O. H. Wittekindt, P. Dietl, B. Mizaikoff and C. Kranz, "Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells," Anal Bioanal Chem., Vol. 399, pp. 2369-2378 (2010)
18 D. Boal, "Mechanics of the Cell," Cambridge University Press, Cambridge, UK (2002)
19 W. Helfrich and R. M. Servuss, "Undulations, steric interaction and cohesion of fluid membranes," Nuovo Cimento D, Vol. 3, pp. 137-151 (1984)   DOI
20 J. Evans, W. Gratzer, N. Mohandas, K. Parker and J. Sleep, "Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence," Biophys. J., Vol. 94, pp. 4134-4144 (2008)   DOI   ScienceOn
21 H. Strey, M. A. Peterson and E. Sackmann, "Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition," Biophys. J., Vol. 69, pp. 478-488 (1995)   DOI   ScienceOn