• 제목/요약/키워드: cell fate

검색결과 192건 처리시간 0.022초

A Novel Feeder-Free Culture System for Expansion of Mouse Spermatogonial Stem Cells

  • Choi, Na Young;Park, Yo Seph;Ryu, Jae-Sung;Lee, Hye Jeong;Arauzo-Bravo, Marcos J.;Ko, Kisung;Han, Dong Wook;Scholer, Hans R.;Ko, Kinarm
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.473-479
    • /
    • 2014
  • Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost-effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate.

SCFFBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/CCCS52A2

  • Geem, Kyoung Rok;Kim, Hyemin;Ryu, Hojin
    • Molecules and Cells
    • /
    • 제45권10호
    • /
    • pp.695-701
    • /
    • 2022
  • Homeostatic regulation of meristematic stem cells accomplished by maintaining a balance between stem cell self-renewal and differentiation is critical for proper plant growth and development. The quiescent center (QC) regulates root apical meristem homeostasis by maintaining stem cell fate during plant root development. Cell cycle checkpoints, such as anaphase promoting complex/cyclosome/cell cycle switch 52 A2 (APC/CCCS52A2), strictly control the low proliferation rate of QC cells. Although APC/CCCS52A2 plays a critical role in maintaining QC cell division, the molecular mechanism that regulates its activity remains largely unknown. Here, we identified SCFFBS1, a ubiquitin E3 ligase, as a key regulator of QC cell division through the direct proteolysis of CCS52A2. FBS1 activity is positively associated with QC cell division and CCS52A2 proteolysis. FBS1 overexpression or ccs52a2-1 knockout consistently resulted in abnormal root development, characterized by root growth inhibition and low mitotic activity in the meristematic zone. Loss-of-function mutation of FBS1, on the other hand, resulted in low QC cell division, extremely low WOX5 expression, and rapid root growth. The 26S proteasome-mediated degradation of CCS52A2 was facilitated by its direct interaction with FBS1. The FBS1 genetically interacted with APC/CCCS52A2-ERF115-PSKR1 signaling module for QC division. Thus, our findings establish SCFFBS1-mediated CCS52A2 proteolysis as the molecular mechanism for controlling QC cell division in plants.

Potentiation of T Cell Stimulatory Activity by Chemical Fixation of a Weak Peptide-MHC Complex

  • Hwang, Inkyu;Kim, Kwangmi;Choi, Sojin;Lomunova, Maria
    • Molecules and Cells
    • /
    • 제40권1호
    • /
    • pp.24-36
    • /
    • 2017
  • The stability of peptide-MHC complex (pMHC) is an important factor to shape the fate of peptide-specific T cell immune response, but how it influences on T cell activation process is poorly understood. To better understand that, we investigated various T cell activation events driven by $L^d$ MHCI loaded with graded concentrations of P2Ca and QL9 peptides, respectively, with 2C TCR Tg T cells; the binding strength of P2Ca for $L^d$ is measurably weaker than that of QL9, but either peptides in the context of $L^d$ interact with 2C TCR with a similar strength. When their concentrations required for early T cell activation events, which occur within several minutes to an hour, were concerned, $EC_{50}s$ of QL9 were about 100 folds lower than those of P2Ca, which was expected from their association constants for $L^d$. When $EC_{50}s$ for late activation events, which takes over several hours to occur, were concerned, the differences grew even larger (> 300 folds), suggesting that, due to weak binding, $L^d/P2Ca$ dissociate from each other more easily to lose its antigenicity in a short time. Accordingly, fixation of $L^d/P2Ca$ with paraformaldehyde resulted in a significant improvement in its immunogenicity. These results imply that binding strength of a peptide for a MHC is a critical factor to determine the duration of pMHC-mediated T cell activation and thus the attainment of productive T cell activation. It is also suggested that paraformaldehyde fixation should be an effective tool to ameliorate the immunogenicity of pMHC with a poor stability.

Dishevelling Wnt and Hippo

  • Kim, Nam Hee;Lee, Yoonmi;Yook, Jong In
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.425-426
    • /
    • 2018
  • As highly conserved signaling cascades of multicellular organisms, Wnt and Hippo pathways control a wide range of cellular activities, including cell adhesion, fate determination, cell cycle, motility, polarity, and metabolism. Dysregulation of those pathways are implicated in many human diseases, including cancer. Similarly to ${\beta}-catenin$ in the Wnt pathway, the YAP transcription co-activator is a major player in Hippo. Although the intracellular dynamics of YAP are well-known to largely depend on phosphorylation by LATS and AMPK kinases, the molecular effector of YAP cytosolic translocation remains unidentified. Recently, we reported that the Dishevelled (DVL), a key scaffolding protein between canonical and non-canonical Wnt pathway, is responsible for nuclear export of phosphorylated YAP. The DVL is also required for YAP intracellular trafficking induced by E-cadherin, ${\alpha}-catenin$, or metabolic stress. Note that the p53/LATS2 and LKB1/AMPK tumor suppressor axes, commonly inactivated in human cancer, govern the reciprocal inhibition between DVL and YAP. Conversely, loss of the tumor suppressor allows co-activation of YAP and Wnt independent of epithelial polarity or contact inhibition in human cancer. These observations provide novel mechanistic insight into (1) a tight molecular connection merging the Wnt and Hippo pathways, and (2) the importance of tumor suppressor contexts with respect to controlled proliferation and epithelial polarity regulated by cell adhesion.

Fate of Donor Centrosome and Microtubule Dynamics of Porcine Somatic Cell Nuclear Transfer Embryos

  • Kwon, Dae-Jin;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • 제34권2호
    • /
    • pp.73-79
    • /
    • 2010
  • We investigated the microtubule dynamics, including the inheritance of donor centrosomes and the mitotic spindle assembly occurring during the first mitosis of somatic cell nuclear transfer (SCNT) embryos in pigs. SCNT embryos were fixed 15 min and 1 h after fusion in order to assess the inheritance pattern of the donor centrosome. The distribution and dynamic of the centrosome and microtubule during the first mitotic phase of SCNT embryos were also evaluated. The frequency of embryos evidencing $\gamma$-tubulin spots (centrosome) was 93.2% in the SCNT embryos 15 min after fusion. In the majority of the SCNT embryos (61.5%), however, no centrosome was observed 1 h after fusion. The frequency of the embryos with no or abnormal mitotic spindles 20 h after fusion was 19.6%. The $\gamma$-tubulin spots were detected near the nuclei of somatic cells regardless of cell cycle phase, whereas $\gamma$-tubulin spots in the SCNT embryos were observed only during the inter-anaphase transition. These results showed that the donor centrosome is inherited into the SCNT embryos, but failed to assemble the normal mitotic spindles during first mitotic phase in some SCNT embryos.

Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night

  • Sweeney, Kerri;Cameron, Ewan R.;Blyth, Karen
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.188-197
    • /
    • 2020
  • Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.

The Role of RUNX1 in NF1-Related Tumors and Blood Disorders

  • Na, Youjin;Huang, Gang;Wu, Jianqiang
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.153-159
    • /
    • 2020
  • Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. NF1 patients are predisposed to formation of several type solid tumors as well as to juvenile myelomonocytic leukemia. Loss of NF1 results in dysregulation of MAPK, PI3K and other signaling cascades, to promote cell proliferation and to inhibit cell apoptosis. The RUNX1 gene is associated with stem cell function in many tissues, and plays a key role in the fate of stem cells. Aberrant RUNX1 expression leads to context-dependent tumor development, in which RUNX1 may serve as a tumor suppressor or an oncogene in specific tissue contexts. The co-occurrence of mutation of NF1 and RUNX1 is detected rarely in several cancers and signaling downstream of RAS-MAPK can alter RUNX1 function. Whether aberrant RUNX1 expression contributes to NF1-related tumorigenesis is not fully understood. This review focuses on the role of RUNX1 in NF1-related tumors and blood disorders, and in sporadic cancers.

Functions of somatic cells for spermatogenesis in stallions

  • Muhammad, Shakeel;Minjung, Yoon
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.654-670
    • /
    • 2022
  • Spermatogenesis and testis development are highly structured physiological processes responsible for post-pubertal fertility in stallions. Spermatogenesis comprises spermatocytogenesis, meiosis, and spermiogenesis. Although germ cell degeneration is a continuous process, its effects are more pronounced during spermatocytogenesis and meiosis. The productivity and efficiency of spermatogenesis are directly linked to pubertal development, degenerated germ cell populations, aging, nutrition, and season of the year in stallions. The multiplex interplay of germ cells with somatic cells, endocrine and paracrine factors, growth factors, and signaling molecules contributes to the regulation of spermatogenesis. A cell-tocell communication within the testes of these factors is a fundamental requirement of normal spermatogenesis. A noteworthy development has been made recently on discovering the effects of different somatic cells including Leydig, Sertoli, and peritubular myoid cells on manipulation the fate of spermatogonial stem cells. In this review, we discuss the self-renewal, differentiation, and apoptotic roles of somatic cells and the relationship between somatic and germ cells during normal spermatogenesis. We also summarize the roles of different growth factors, their paracrine/endocrine/autocrine pathways, and the different cytokines associated with spermatogenesis. Furthermore, we highlight important matters for further studies on the regulation of spermatogenesis. This review presents an insight into the mechanism of spermatogenesis, and helpful in developing better understanding of the functions of somatic cells, particularly in stallions and would offer new research goals for developing curative techniques to address infertility/subfertility in stallions.

Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/β-catenin signaling pathway

  • Shi, Zhe;Zhou, Liyuan;Zhou, Yan;Jia, Xiaoyan;Yu, Xiangjun;An, Xiaohong;Han, Yanzhen
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.299-304
    • /
    • 2022
  • Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/β-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/β-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/β-catenin pathway, which in turn activates the mitochondrial apoptotic pathway.

임프란트에 관련된 금속이온의 조골세포에 대한 세포독성에 미치는 Hsp27의 영향에 대한 실험적 연구 (HSP27 MODULATION OF IMPLANT- ASSOCIATED METAL ION CYTOTOXICITY OF OSTEOBLASTIC CELLS)

  • 윤정호;하동진;임재석;권종진;장현석;이의석;김대성
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권2호
    • /
    • pp.127-135
    • /
    • 2006
  • Objectives: The extent of bone formation that occurs at the interface of metallic implants and bone is determined by the number and activity of osteoblastic cells. Stress proteins may be contributing determinants of cell viability in altered environments. Hsp27 is a small Mr hsp which is known as a molecular chaperone. Methods: To better understand how heat shock protein 27 contributes to endosseous implant - associated metal ions affects on osteoblastic cell viability, the effect of chromium and titanium ions were compared to effects of cadmium ions in the ROS17/2.8 osteoblastic cell line. Results: ROS17/2.8 osteoblastic cell line demonstrated ion - specific reductions in growth; reductions were significantly greater for cadmium than for chromium or titanium. Chromium impaired growth of cultures without altering cell viability measured using the MTT assay. A stable transformed cell line expressing additional hsp27(clone "A7") was resistant to the toxic effects of titanium and partially protected from cadmium toxicity. Conclusions: A role for hsp27 in protection of osteoblastic cells from metal ion toxicity is supported by the chromium - induced elevations in hsp27 abundance and the behavior of the A7 cell line in response to metal ions in culture. Similar biochemical responses to altered cellular environments may contribute to the fate of tissues adjacent to select metallic implants.