DOI QR코드

DOI QR Code

The Role of RUNX1 in NF1-Related Tumors and Blood Disorders

  • Na, Youjin (Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center) ;
  • Huang, Gang (Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center) ;
  • Wu, Jianqiang (Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center)
  • Received : 2019.11.27
  • Accepted : 2019.12.12
  • Published : 2020.02.29

Abstract

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. NF1 patients are predisposed to formation of several type solid tumors as well as to juvenile myelomonocytic leukemia. Loss of NF1 results in dysregulation of MAPK, PI3K and other signaling cascades, to promote cell proliferation and to inhibit cell apoptosis. The RUNX1 gene is associated with stem cell function in many tissues, and plays a key role in the fate of stem cells. Aberrant RUNX1 expression leads to context-dependent tumor development, in which RUNX1 may serve as a tumor suppressor or an oncogene in specific tissue contexts. The co-occurrence of mutation of NF1 and RUNX1 is detected rarely in several cancers and signaling downstream of RAS-MAPK can alter RUNX1 function. Whether aberrant RUNX1 expression contributes to NF1-related tumorigenesis is not fully understood. This review focuses on the role of RUNX1 in NF1-related tumors and blood disorders, and in sporadic cancers.

Keywords

References

  1. Akech, J., Wixted, J.J., Bedard, K., van der Deen, M., Hussain, S., Guise, T.A., van Wijnen, A.J., Stein, J.L., Languino, L.R., Altieri, D.C., et al. (2010). Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29, 811-821. https://doi.org/10.1038/onc.2009.389
  2. Al Mugairi, A., Al Turki, S., Salama, H., Al Ahmadi, K., Abuelgasim, K.A., and Damlaj, M. (2019). Isolated bone marrow non-langerhans cell histiocytosis preceding RUNX1-Mutated acute myeloid leukemia: case report and literature review. Am. J. Clin. Pathol. 151, 638-646. https://doi.org/10.1093/ajcp/aqz018
  3. Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K.K., Carter, S.L., Frederick, A.M., Lawrence, M.S., Sivachenko, A.Y., Sougnez, C., Zou, L., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405-409. https://doi.org/10.1038/nature11154
  4. Bejar, R., Stevenson, K., Abdel-Wahab, O., Galili, N., Nilsson, B., Garcia-Manero, G., Kantarjian, H., Raza, A., Levine, R.L., Neuberg, D., et al. (2011). Clinical effect of point mutations in myelodysplastic syndromes. N. Engl. J. Med. 364, 2496-2506. https://doi.org/10.1056/NEJMoa1013343
  5. Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D.W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. https://doi.org/10.1038/nature10166
  6. Bogoch, Y., Friedlander-Malik, G., Lupu, L., Bondar, E., Zohar, N., Langier, S., Ram, Z., Nachmany, I., Klausner, J.M., and Pencovich, N. (2017). Augmented expression of RUNX1 deregulates the global gene expression of U87 glioblastoma multiforme cells and inhibits tumor growth in mice. Tumour. Biol. 39, 1010428317698357.
  7. Bogusz, A.M. (2017). EBV-negative Monomorphic B-Cell posttransplant lymphoproliferative disorder with marked morphologic pleomorphism and pathogenic mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53. Case Rep. Hematol. 2017, 5083463.
  8. Boyd, K.P., Korf, B.R., and Theos, A. (2009). Neurofibromatosis type 1. J. Am. Acad. Dermatol. 61, 1-14. https://doi.org/10.1016/j.jaad.2008.12.051
  9. Bushweller, J.H. (2000). CBF--a biophysical perspective. Semin. Cell Dev. Biol. 11, 377-382. https://doi.org/10.1006/scdb.2000.0182
  10. Chang, T., Krisman, K., Theobald, E.H., Xu, J., Akutagawa, J., Lauchle, J.O., Kogan, S., Braun, B.S., and Shannon, K. (2013). Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J. Clin. Invest. 123, 335-339. https://doi.org/10.1172/JCI63193
  11. Chang, T.Y., Dvorak, C.C., and Loh, M.L. (2014). Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. Blood 124, 2487-2497. https://doi.org/10.1182/blood-2014-03-300319
  12. Chen, C., Liu, Y., Rappaport, A.R., Kitzing, T., Schultz, N., Zhao, Z., Shroff, A.S., Dickins, R.A., Vakoc, C.R., Bradner, J.E., et al. (2014). MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25, 652-665. https://doi.org/10.1016/j.ccr.2014.03.016
  13. Chen, Z., Mo, J., Brosseau, J.-P., Shipman, T., Wang, Y., Liao, C.-P., Cooper, J. M., Allaway, R.J., Gosline, S.J.C., Guinney, J., et al. (2019). Spatiotemporal loss of NF1 in schwann cell lineage leads to different types of cutaneous neurofibroma susceptible to modification by the hippo pathway. Cancer Discov. 9, 114-129. https://doi.org/10.1158/2159-8290.CD-18-0151
  14. Cichowski, K., Shih, T.S., Schmitt, E., Santiago, S., Reilly, K., McLaughlin, M.E., Bronson, R.T., and Jacks, T. (1999). Mouse models of tumor development in neurofibromatosis type 1. Science 286, 2172-2176. https://doi.org/10.1126/science.286.5447.2172
  15. Cooper, L.A.D., Gutman, D.A., Chisolm, C., Appin, C., Kong, J., Rong, Y., Kurc, T., Van Meir, E.G., Saltz, J.H., Moreno, C.S., et al. (2012). The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am. J. Path. 180, 2108-2119. https://doi.org/10.1016/j.ajpath.2012.01.040
  16. Cunningham, L., Finckbeiner, S., Hyde, R.K., Southall, N., Marugan, J., Yedavalli, V.R.K., Dehdashti, S.J., Reinhold, W.C., Alemu, L., Zhao, L., et al. (2012). Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proc. Natl. Acad. Sci. U. S. A. 109, 14592-14597. https://doi.org/10.1073/pnas.1200037109
  17. Deltcheva, E. and Nimmo, R. (2017). RUNX transcription factors at the interface of stem cells and cancer. Biochem. J. 474, 1755-1768. https://doi.org/10.1042/BCJ20160632
  18. Desmedt, C., Zoppoli, G., Gundem, G., Pruneri, G., Larsimont, D., Fornili, M., Fumagalli, D., Brown, D., Rothe, F., Vincent, D., et al. (2016). Genomic characterization of primary invasive lobular breast cancer. J. Clin. Oncol. 34, 1872-1881. https://doi.org/10.1200/JCO.2015.64.0334
  19. Ding, L., Getz, G., Wheeler, D.A., Mardis, E.R., McLellan, M.D., Cibulskis, K., Sougnez, C., Greulich, H., Muzny, D.M., Morgan, M.B., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069-1075. https://doi.org/10.1038/nature07423
  20. Dombi, E., Baldwin, A., Marcus, L.J., Fisher, M.J., Weiss, B., Kim, A., Whitcomb, P., Martin, S., Aschbacher-Smith, L.E., Rizvi, T.A., et al. (2016). Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N. Engl. J. Med. 375, 2550-2560. https://doi.org/10.1056/NEJMoa1605943
  21. Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11-22. https://doi.org/10.1038/nrc969
  22. Ellis, M.J., Ding, L., Shen, D., Luo, J., Suman, V.J., Wallis, J.W., Van Tine, B.A., Hoog, J., Goiffon, R.J., Goldstein, T.C., et al. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353-360. https://doi.org/10.1038/nature11143
  23. Evans, D.G.R., O'Hara, C., Wilding, A., Ingham, S.L., Howard, E., Dawson, J., Moran, A., Scott-Kitching, V., Holt, F., and Huson, S.M. (2011). Mortality in neurofibromatosis 1: in North West England: an assessment of actuarial survival in a region of the UK since 1989. Eur. J. Hum. Genet. 19, 1187-1191. https://doi.org/10.1038/ejhg.2011.113
  24. Hall, A., Choi, K., Liu, W., Rose, J., Zhao, C., Yu, Y., Na, Y., Cai, Y., Coover, R.A., Lin, Y., et al. (2019). RUNX represses Pmp22 to drive neurofibromagenesis. Sci. Adv. 5, eaau8389. https://doi.org/10.1126/sciadv.aau8389
  25. Hong, D., Fritz, A.J., Finstad, K.H., Fitzgerald, M.P., Weinheimer, A., Viens, A.L., Ramsey, J., Stein, J.L., Lian, J.B., and Stein, G.S. (2018). Suppression of breast cancer stem cells and tumor growth by the RUNX1 transcription factor. Mol. Cancer Res. 16, 1952-1964. https://doi.org/10.1158/1541-7786.MCR-18-0135
  26. Howell, S.J., Hockenhull, K., Salih, Z., and Evans, D.G. (2017). Increased risk of breast cancer in neurofibromatosis type 1: current insights. Breast Cancer (Dove Med Press) 9, 531-536. https://doi.org/10.2147/BCTT.S111397
  27. Huang, G., Shigesada, K., Ito, K., Wee, H.J., Yokomizo, T., and Ito, Y. (2001). Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitinproteasome-mediated degradation. EMBO J. 20, 723-733. https://doi.org/10.1093/emboj/20.4.723
  28. Imai, Y., Kurokawa, M., Yamaguchi, Y., Izutsu, K., Nitta, E., Mitani, K., Satake, M., Noda, T., Ito, Y., and Hirai, H. (2004). The corepressor mSin3A regulates phosphorylation-induced activation, intranuclear location, and stability of AML1. Mol. Cell. Bol. 24, 1033-1043. https://doi.org/10.1128/MCB.24.3.1033-1043.2004
  29. Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95. https://doi.org/10.1038/nrc3877
  30. Jessen, W.J., Miller, S.J., Jousma, E., Wu, J., Rizvi, T.A., Brundage, M.E., Eaves, D., Widemann, B., Kim, M.-O., Dombi, E., et al. (2013). MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J. Clin. Invest. 123, 340-347. https://doi.org/10.1172/JCI60578
  31. Jousma, E., Rizvi, T.A., Wu, J., Janhofer, D., Dombi, E., Dunn, R.S., Kim, M.- O., Masters, A.R., Jones, D.R., Cripe, T.P., and Ratner, N. (2015). Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of Neurofibromatosis type 1. Pediatr. Blood Cancer 62, 1709-1716. https://doi.org/10.1002/pbc.25546
  32. Keita, M., Bachvarova, M., Morin, C., Plante, M., Gregoire, J., Renaud, M.-C., Sebastianelli, A., Trinh, X. B., and Bachvarov, D. (2013). The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion. Cell Cycle 12, 972-986. https://doi.org/10.4161/cc.23963
  33. Komori, T. (2010). Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tiss. Res. 339, 189-195. https://doi.org/10.1007/s00441-009-0832-8
  34. Le, L.Q., Shipman, T., Burns, D.K., and Parada, L.F. (2009). Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell Stem Cell 4, 453-463. https://doi.org/10.1016/j.stem.2009.03.017
  35. Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., Bernstein, Y., Goldenberg, D., Xiao, C., Fliegauf, M., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454-3463. https://doi.org/10.1093/emboj/cdf370
  36. Li, H., Zhao, X., Yan, X., Jessen, W. J., Kim, M.O., Dombi, E., Liu, P.P., Huang, G., and Wu, J. (2016). Runx1 contributes to neurofibromatosis type 1 neurofibroma formation. Oncogene 35, 1468-1474. https://doi.org/10.1038/onc.2015.207
  37. Logan, T.T., Rusnak, M., and Symes, A.J. (2015). Runx1 promotes proliferation and neuronal differentiation in adult mouse neurosphere cultures. Stem Cell Res. 15, 554-564. https://doi.org/10.1016/j.scr.2015.09.014
  38. Mayes, D.A., Rizvi, T.A., Cancelas, J.A., Kolasinski, N.T., Ciraolo, G.M., Stemmer-Rachamimov, A.O., and Ratner, N. (2011). Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res. 71, 4675-4685. https://doi.org/10.1158/0008-5472.CAN-10-4558
  39. McLendon, R., Friedman, A., Bigner, D., Van Meir, E.G., Brat, D.J., Mastrogianakis, G.M., Olson, J.J., Mikkelsen, T., Lehman, N., Aldape, K., et al. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068. https://doi.org/10.1038/nature07385
  40. Morita, K., Suzuki, K., Maeda, S., Matsuo, A., Mitsuda, Y., Tokushige, C., Kashiwazaki, G., Taniguchi, J., Maeda, R., Noura, M., et al. (2017). Genetic regulation of the RUNX transcription factor family has antitumor effects. J. Clin. Invest. 127, 2815-2828. https://doi.org/10.1172/JCI91788
  41. Nakagawa, M., Shimabe, M., Watanabe-Okochi, N., Arai, S., Yoshimi, A., Shinohara, A., Nishimoto, N., Kataoka, K., Sato, T., Kumano, K., et al. (2011). AML1/RUNX1 functions as a cytoplasmic attenuator of NF-kappaB signaling in the repression of myeloid tumors. Blood 118, 6626-6637. https://doi.org/10.1182/blood-2010-12-326710
  42. Niimi, H., Harada, H., Harada, Y., Ding, Y., Imagawa, J., Inaba, T., Kyo, T., and Kimura, A. (2006). Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Leukemia 20, 635-644. https://doi.org/10.1038/sj.leu.2404136
  43. Philpott, C., Tovell, H., Frayling, I.M., Cooper, D.N., and Upadhyaya, M. (2017). The NF1 somatic mutational landscape in sporadic human cancers. Hum. Genomics 11, 13. https://doi.org/10.1186/s40246-017-0109-3
  44. Radomska, K.J., Coulpier, F., Gresset, A., Schmitt, A., Debbiche, A., Lemoine, S., Wolkenstein, P., Vallat, J.-M., Charnay, P., and Topilko, P. (2019). Cellular origin, tumor progression, and pathogenic mechanisms of cutaneous neurofibromas revealed by mice with Nf1 knockout in boundary cap cells. Cancer Discov. 9, 130-147. https://doi.org/10.1158/2159-8290.CD-18-0156
  45. Ramsey, J., Butnor, K., Peng, Z., Leclair, T., van der Velden, J., Stein, G., Lian, J., and Kinsey, C.M. (2018). Loss of RUNX1 is associated with aggressive lung adenocarcinomas. J. Cell. Physiol. 233, 3487-3497. https://doi.org/10.1002/jcp.26201
  46. Ratner, N. and Miller, S.J. (2015). A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat. Rev. Cancer 15, 290-301. https://doi.org/10.1038/nrc3911
  47. Rooney, N., Riggio, A.I., Mendoza-Villanueva, D., Shore, P., Cameron, E.R., and Blyth, K. (2017). Runx genes in breast cancer and the mammary lineage. Adv. Exp. Med. Biol. 962, 353-368. https://doi.org/10.1007/978-981-10-3233-2_22
  48. Sangpairoj, K., Vivithanaporn, P., Apisawetakan, S., Chongthammakun, S., Sobhon, P., and Chaithirayanon, K. (2017). RUNX1 regulates migration, invasion, and angiogenesis via p38 MAPK pathway in human glioblastoma. Cell. Mol. Neurobiol. 37, 1243-1255. https://doi.org/10.1007/s10571-016-0456-y
  49. Serra, E., Puig, S., Otero, D., Gaona, A., Kruyer, H., Ars, E., Estivill, X., and Lazaro, C. (1997). Confirmation of a double-hit model for the NF1 gene in benign neurofibromas. Am. J. Hum. Genet. 61, 512-519. https://doi.org/10.1086/515504
  50. Sood, R., Kamikubo, Y., and Liu, P. (2017). Role of RUNX1 in hematological malignancies. Blood 129, 2070-2082. https://doi.org/10.1182/blood-2016-10-687830
  51. Spyris, C.D., Castellino, R.C., Schniederjan, M.J., and Kadom, N. (2019). High-grade gliomas in children with neurofibromatosis type 1: literature review and illustrative cases. AJNR Am. J. Neuroradiol. 40, 366-369. https://doi.org/10.3174/ajnr.A5888
  52. Stifani, S. and Ma, Q. (2009). 'Runxs and regulations' of sensory and motor neuron subtype differentiation: implications for hematopoietic development. Blood Cells Mol. Dis. 43, 20-26. https://doi.org/10.1016/j.bcmd.2009.03.001
  53. Suarez-Kelly, L.P., Yu, L., Kline, D., Schneider, E.B., Agnese, D.M., and Carson, W.E. (2019). Increased breast cancer risk in women with neurofibromatosis type 1: a meta-analysis and systematic review of the literature. Hered. Cancer Clin. Pract. 17, 12. https://doi.org/10.1186/s13053-019-0110-z
  54. Teng, H., Wang, P., Xue, Y., Liu, X., Ma, J., Cai, H., Xi, Z., Li, Z., and Liu, Y. (2016). Role of HCP5-miR-139-RUNX1 feedback loop in regulating malignant behavior of glioma cells. Mol. Ther. 24, 1806-1822. https://doi.org/10.1038/mt.2016.103
  55. Tlemsani, C., Pecuchet, N., Gruber, A., Laurendeau, I., Danel, C., Riquet, M., Le Pimpec-Barthes, F., Fabre, E., Mansuet-Lupo, A., Damotte, D., et al. (2019). NF1 mutations identify molecular and clinical subtypes of lung adenocarcinomas. Cancer Med. 8, 4330-4337. https://doi.org/10.1002/cam4.2175
  56. Uusitalo, E., Kallionpaa, R.A., Kurki, S., Rantanen, M., Pitkaniemi, J., Kronqvist, P., Harkonen, P., Huovinen, R., Carpen, O., Poyhonen, M., et al. (2017). Breast cancer in neurofibromatosis type 1: overrepresentation of unfavourable prognostic factors. Br. J. Cancer 116, 211-217. https://doi.org/10.1038/bjc.2016.403
  57. Varan, A., Sen, H., Aydin, B., Yalcin, B., Kutluk, T., and Akyuz, C. (2016). Neurofibromatosis type 1 and malignancy in childhood. Clin. Genet. 89, 341-345. https://doi.org/10.1111/cge.12625
  58. Wallace, M.D., Pfefferle, A.D., Shen, L., McNairn, A.J., Cerami, E.G., Fallon, B.L., Rinaldi, V.D., Southard, T.L., Perou, C.M., and Schimenti, J.C. (2012). Comparative oncogenomics implicates the neurofibromin 1 gene (NF1) as a breast cancer driver. Genetics 192, 385-396. https://doi.org/10.1534/genetics.112.142802
  59. Way, G.P., Allaway, R.J., Bouley, S.J., Fadul, C.E., Sanchez, Y., and Greene, C.S. (2017). A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma. BMC Genomics 18, 127. https://doi.org/10.1186/s12864-017-3519-7
  60. Wu, J., Williams, J.P., Rizvi, T.A., Kordich, J.J., Witte, D., Meijer, D., Stemmer-Rachamimov, A.O., Cancelas, J.A., and Ratner, N. (2008). Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13, 105-116. https://doi.org/10.1016/j.ccr.2007.12.027
  61. Yang, G., Khalaf, W., van de Locht, L., Jansen, J.H., Gao, M., Thompson, M.A., van der Reijden, B.A., Gutmann, D.H., Delwel, R., Clapp, D.W., et al. (2005). Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol. Cell. Biol. 25, 5869-5879. https://doi.org/10.1128/MCB.25.14.5869-5879.2005
  62. Yoshikawa, M., Murakami, Y., Senzaki, K., Masuda, T., Ozaki, S., Ito, Y., and Shiga, T. (2013). Coexpression of Runx1 and Runx3 in mechanoreceptive dorsal root ganglion neurons. Dev. Neurobiol. 73, 469-479. https://doi.org/10.1002/dneu.22073
  63. Zhao, K., Cyui, X., Wang, Q., Fang, C., Tan, Y., Wang, Y., Yi, K., Yang, C., You, H., Shang, R., et al. (2019). RUNX1 contributes to the mesenchymal subtype of glioblastoma in a $TGF{\beta}$ pathway-dependent manner. Cell Death Dis. 10, 877. https://doi.org/10.1038/s41419-019-2108-x
  64. Zhao, X., Jankovic, V., Gural, A., Huang, G., Pardanani, A., Menendez, S., Zhang, J., Dunne, R., Xiao, A., Erdjument-Bromage, H., et al. (2008). Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev. 22, 640-653. https://doi.org/10.1101/gad.1632608
  65. Zheng, H., Chang, L., Patel, N., Yang, J., Lowe, L., Burns, D.K., and Zhu, Y. (2008). Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 13, 117-128. https://doi.org/10.1016/j.ccr.2008.01.002
  66. Zhu, Y., Ghosh, P., Charnay, P., Burns, D., and Parada, L. (2002). Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296, 920-922. https://doi.org/10.1126/science.1068452