DOI QR코드

DOI QR Code

Potentiation of T Cell Stimulatory Activity by Chemical Fixation of a Weak Peptide-MHC Complex

  • Hwang, Inkyu (Department of Chemistry and Chemical Biology, The Scripps Research Institute) ;
  • Kim, Kwangmi (Department of Chemistry and Chemical Biology, The Scripps Research Institute) ;
  • Choi, Sojin (College of Pharmacy, Chungnam National University) ;
  • Lomunova, Maria (College of Pharmacy, Chungnam National University)
  • Received : 2016.09.08
  • Accepted : 2016.12.27
  • Published : 2017.01.31

Abstract

The stability of peptide-MHC complex (pMHC) is an important factor to shape the fate of peptide-specific T cell immune response, but how it influences on T cell activation process is poorly understood. To better understand that, we investigated various T cell activation events driven by $L^d$ MHCI loaded with graded concentrations of P2Ca and QL9 peptides, respectively, with 2C TCR Tg T cells; the binding strength of P2Ca for $L^d$ is measurably weaker than that of QL9, but either peptides in the context of $L^d$ interact with 2C TCR with a similar strength. When their concentrations required for early T cell activation events, which occur within several minutes to an hour, were concerned, $EC_{50}s$ of QL9 were about 100 folds lower than those of P2Ca, which was expected from their association constants for $L^d$. When $EC_{50}s$ for late activation events, which takes over several hours to occur, were concerned, the differences grew even larger (> 300 folds), suggesting that, due to weak binding, $L^d/P2Ca$ dissociate from each other more easily to lose its antigenicity in a short time. Accordingly, fixation of $L^d/P2Ca$ with paraformaldehyde resulted in a significant improvement in its immunogenicity. These results imply that binding strength of a peptide for a MHC is a critical factor to determine the duration of pMHC-mediated T cell activation and thus the attainment of productive T cell activation. It is also suggested that paraformaldehyde fixation should be an effective tool to ameliorate the immunogenicity of pMHC with a poor stability.

Keywords

References

  1. Abram, C.L., and Lowell, C.A. (2009). The ins and outs of leukocyte integrin signaling. Ann. Rev. Immunol. 27, 339-362. https://doi.org/10.1146/annurev.immunol.021908.132554
  2. Alegre, M.L., Frauwirth, K.A., and Thompson, C.B. (2001). T-cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1, 220-228. https://doi.org/10.1038/35105024
  3. Bachmann, M.F., McKall-Faienza, K., Schmits, R., Bouchard, D., Beach, J., Speiser, D.E., Mak, T.W., and Ohashi, P.S. (1997). Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 7, 549-557. https://doi.org/10.1016/S1074-7613(00)80376-3
  4. Buermans, H.P., and den Dunnen, J.T. (2014). Next generation sequencing technology: advances and applications. Biochim. Biophys. Acta 1842, 1932-1941. https://doi.org/10.1016/j.bbadis.2014.06.015
  5. Busch, D.H., and Pamer, E.G. (1998). MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol. 160, 4441-4448.
  6. Butterfield, L.H. (2015). Cancer vaccines. BMJ 350, h988. https://doi.org/10.1136/bmj.h988
  7. Cai, Z., Brunmark, A., Jackson, M.R., Loh, D., Peterson, P.A., and Sprent, J. (1996). Transfected Drosophila cells as a probe for defining the minimal requirements for stimulating unprimed CD8+ T cells. Proc. Natl. Acad. Sci. USA 93, 14736-14741. https://doi.org/10.1073/pnas.93.25.14736
  8. Edwards, L.J., and Evavold, B.D. (2013). Destabilization of peptide:MHC interaction induces IL-2 resistant anergy in diabetogenic T cells. J. Autoimmun. 44, 82-90. https://doi.org/10.1016/j.jaut.2013.07.002
  9. Eltoum, I., Fredenburgh, J., Myers, R.B., and Grizzle, W.E. (2001). Introduction to the theory and practice of fixation of tissues. J. Histotechnol. 24, 173-190. https://doi.org/10.1179/his.2001.24.3.173
  10. Friedl, P., and Gunzer, M. (2001). Interaction of T cells with APCs: the serial encounter model. Trends Immunol. 22, 187-191. https://doi.org/10.1016/S1471-4906(01)01869-5
  11. Garcia, K.C., Tallquist, M.D., Pease, L.R., Brunmark, A., Scott, C.A., Degano, M., Stura, E.A., Peterson, P.A., Wilson, I.A., and Teyton, L. (1997). Alphabeta T cell receptor interactions with syngeneic and allogeneic ligands: affinity measurements and crystallization. Proc. Natl. Acad. Sci. USA 94, 13838-13843. https://doi.org/10.1073/pnas.94.25.13838
  12. Germain, R.N., and Stefanova, I. (1999). The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Ann. Rev. Immunol. 17, 467-522. https://doi.org/10.1146/annurev.immunol.17.1.467
  13. Harndahl, M., Rasmussen, M., Roder, G., Dalgaard Pedersen, I., Sorensen, M., Nielsen, M., and Buus, S. (2012). Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J. Immunol. 42, 1405-1416. https://doi.org/10.1002/eji.201141774
  14. Hogan, P.G., Lewis, R.S., and Rao, A. (2010). Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Ann. Rev. Immunol. 28, 491-533. https://doi.org/10.1146/annurev.immunol.021908.132550
  15. Holler, P.D., Lim, A.R., Cho, B.K., Rund, L.A., and Kranz, D.M. (2001). CD8(-) T cell transfectants that express a high affinity T cell receptor exhibit enhanced peptide-dependent activation. J. Exp. Med. 194, 1043-1052. https://doi.org/10.1084/jem.194.8.1043
  16. Hornell, T.M., Martin, S.M., Myers, N.B., and Connolly, J.M. (2001). Peptide length variants p2Ca and QL9 present distinct conformations to L(d)-specific T cells. J. Immunol. 167, 4207-4214. https://doi.org/10.4049/jimmunol.167.8.4207
  17. Hwang, I., Shen, X., and Sprent, J. (2003). Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: Distinct roles for CD54 and B7 molecules. Proc. Natl. Acad. Sci. USA 100, 6670-6675. https://doi.org/10.1073/pnas.1131852100
  18. Khilko, S.N., Corr, M., Boyd, L.F., Lees, A., Inman, J.K., and Margulies, D.H. (1993). Direct detection of major histocompatibility complex class I binding to antigenic peptides using surface plasmon resonance. Peptide immobilization and characterization of binding specificity. J. Biol. Chem. 268, 15425-15434.
  19. Khilko, S.N., Jelonek, M.T., Corr, M., Boyd, L.F., Bothwell, A.L., and Margulies, D.H. (1995). Measuring interactions of MHC class I molecules using surface plasmon resonance. J. Immunol. Methods 183, 77-94. https://doi.org/10.1016/0022-1759(95)00033-7
  20. Kim, K., Wang, L., and Hwang, I. (2009a). Acute inhibition of selected membrane-proximal mouse T cell receptor signaling by mitochondrial antagonists. PloS one 4, e7738. https://doi.org/10.1371/journal.pone.0007738
  21. Kim, K., Wang, L., and Hwang, I. (2009b). LFA-1-dependent Ca2+ Entry following suboptimal T cell receptor triggering proceeds without mobilization of intracellular $Ca^{2+}$. J. Biol. Chem. 284, 22149-22154. https://doi.org/10.1074/jbc.M109.000752
  22. Kim, K., Wang, L., and Hwang, I. (2009c). A novel flow cytometric high throughput assay for a systematic study on molecular mechanisms underlying T cell receptor-mediated integrin activation. PloS one 4, e6044. https://doi.org/10.1371/journal.pone.0006044
  23. Kloetzel, P.M. (2001). Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2, 179-187. https://doi.org/10.1038/35056572
  24. Kranz, D.M., Tonegawa, S., and Eisen, H.N. (1984). Attachment of an anti-receptor antibody to non-target cells renders them susceptible to lysis by a clone of cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 81, 7922-7926. https://doi.org/10.1073/pnas.81.24.7922
  25. Kumari, S., Curado, S., Mayya, V., and Dustin, M.L. (2014). T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim. Biophys. Acta 1838, 546-556. https://doi.org/10.1016/j.bbamem.2013.05.004
  26. Levitsky, V., Zhang, Q.J., Levitskaya, J., and Masucci, M.G. (1996). The life span of major histocompatibility complex-peptide complexes influences the efficiency of presentation and immunogenicity of two class I-restricted cytotoxic T lymphocyte epitopes in the Epstein-Barr virus nuclear antigen 4. J. Exp. Med. 183, 915-926. https://doi.org/10.1084/jem.183.3.915
  27. Liu, F., Zheng, H., Qi, Y., Wang, X., Yang, J., Han, M., Zhang, H., and Jiang, H. (2014). PFA-fixed Hsp60sp-loaded dendritic cells as a vaccine for the control of mouse experimental allergic encephalomyelitis. Cell. Mol. Immunol. 11, 169-174. https://doi.org/10.1038/cmi.2013.58
  28. Madrenas, J. (1999). Differential signalling by variant ligands of the T cell receptor and the kinetic model of T cell activation. Life Sci. 64, 717-731. https://doi.org/10.1016/S0024-3205(98)00381-6
  29. Nelson, C.A., Petzold, S.J., and Unanue, E.R. (1994). Peptides determine the lifespan of MHC class II molecules in the antigen-presenting cell. Nature 371, 250-252. https://doi.org/10.1038/371250a0
  30. Parker, K.C., DiBrino, M., Hull, L., and Coligan, J.E. (1992). The beta 2-microglobulin dissociation rate is an accurate measure of the stability of MHC class I heterotrimers and depends on which peptide is bound. J. Immunol. 149, 1896-1904.
  31. Quah, B.J., Warren, H.S., and Parish, C.R. (2007). Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protocols 2, 2049-2056. https://doi.org/10.1038/nprot.2007.296
  32. Rhee, S.G. (2001). Regulation of phosphoinositide-specific phospholipase C. Ann. Rev. Biochem. 70, 281-312. https://doi.org/10.1146/annurev.biochem.70.1.281
  33. Robbins, P.D., and Morelli, A.E. (2014). Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14, 195-208. https://doi.org/10.1038/nri3622
  34. Rosette, C., Werlen, G., Daniels, M.A., Holman, P.O., Alam, S.M., Travers, P.J., Gascoigne, N.R., Palmer, E., and Jameson, S.C. (2001). The impact of duration versus extent of TCR occupancy on T cell activation: a revision of the kinetic proofreading model. Immunity 15, 59-70. https://doi.org/10.1016/S1074-7613(01)00173-X
  35. Rudolph, M.G., Stanfield, R.L., and Wilson, I.A. (2006). How TCRs bind MHCs, peptides, and coreceptors. Ann. Rev. Immunol. 24, 419-466. https://doi.org/10.1146/annurev.immunol.23.021704.115658
  36. Schlueter, C.J., Manning, T.C., Schodin, B.A., and Kranz, D.M. (1996). A residue in the center of peptide QL9 affects binding to both Ld and the T cell receptor. J. Immunol. 157, 4478-4485.
  37. Shimizu, Y. (2003). LFA-1: more than just T cell Velcro. Nat. Immunol. 4, 1052-1054. https://doi.org/10.1038/ni1103-1052
  38. Speir, J.A., Garcia, K.C., Brunmark, A., Degano, M., Peterson, P.A., Teyton, L., and Wilson, I.A. (1998). Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity 8, 553-562. https://doi.org/10.1016/S1074-7613(00)80560-9
  39. Stern, L.J., and Wiley, D.C. (1992). The human class II MHC protein HLA-DR1 assembles as empty alpha beta heterodimers in the absence of antigenic peptide. Cell 68, 465-477. https://doi.org/10.1016/0092-8674(92)90184-E
  40. Sykulev, Y., Brunmark, A., Jackson, M., Cohen, R.J., Peterson, P.A., and Eisen, H.N. (1994a). Kinetics and affinity of reactions between an antigen-specific T cell receptor and peptide-MHC complexes. Immunity 1, 15-22. https://doi.org/10.1016/1074-7613(94)90005-1
  41. Sykulev, Y., Brunmark, A., Tsomides, T.J., Kageyama, S., Jackson, M., Peterson, P.A., and Eisen, H.N. (1994b). High-affinity reactions between antigen-specific T-cell receptors and peptides associated with allogeneic and syngeneic major histocompatibility complex class I proteins. Proc. Natl. Acad. Sci. USA 91, 11487-11491. https://doi.org/10.1073/pnas.91.24.11487
  42. van der Burg, S.H., Visseren, M.J., Brandt, R.M., Kast, W.M., and Melief, C.J. (1996). Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. 156, 3308-3314.
  43. Viaud, S., Thery, C., Ploix, S., Tursz, T., Lapierre, V., Lantz, O., Zitvogel, L., and Chaput, N. (2010). Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res. 70, 1281-1285. https://doi.org/10.1158/0008-5472.CAN-09-3276
  44. Viola, A., and Lanzavecchia, A. (1996). T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104-106. https://doi.org/10.1126/science.273.5271.104
  45. Voller, A., Bartlett, A., and Bidwell, D.E. (1978). Enzyme immunoassays with special reference to ELISA techniques. J. Clin. Pathol. 31, 507-520. https://doi.org/10.1136/jcp.31.6.507
  46. Watson, A.M., Mylin, L.M., Thompson, M.M., and Schell, T.D. (2012). Modification of a tumor antigen determinant to improve peptide/MHC stability is associated with increased immunogenicity and cross-priming a larger fraction of CD8+ T cells. J. Immunol. 189, 5549-5560. https://doi.org/10.4049/jimmunol.1102221
  47. Zhu, C., Jiang, N., Huang, J., Zarnitsyna, V.I., and Evavold, B.D. (2013). Insights from in situ analysis of TCR-pMHC recognition: response of an interaction network. Immunol. Rev. 251, 49-64. https://doi.org/10.1111/imr.12016

Cited by

  1. APCs Can Eliminate Associated Viruses and Maintain the APC Function for Generating Antigen-Specific CTLs Ex Vivo vol.2018, pp.1466-1861, 2018, https://doi.org/10.1155/2018/4167652
  2. IQGAP1, a signaling scaffold protein, as a molecular target of a small molecule inhibitor to interfere with T cell receptor-mediated integrin activation vol.47, pp.2, 2017, https://doi.org/10.7744/kjoas.20200026