Browse > Article
http://dx.doi.org/10.5187/jast.2022.e57

Functions of somatic cells for spermatogenesis in stallions  

Muhammad, Shakeel (Department of Animal Science and Biotechnology, Kyungpook National University)
Minjung, Yoon (Department of Animal Science and Biotechnology, Kyungpook National University)
Publication Information
Journal of Animal Science and Technology / v.64, no.4, 2022 , pp. 654-670 More about this Journal
Abstract
Spermatogenesis and testis development are highly structured physiological processes responsible for post-pubertal fertility in stallions. Spermatogenesis comprises spermatocytogenesis, meiosis, and spermiogenesis. Although germ cell degeneration is a continuous process, its effects are more pronounced during spermatocytogenesis and meiosis. The productivity and efficiency of spermatogenesis are directly linked to pubertal development, degenerated germ cell populations, aging, nutrition, and season of the year in stallions. The multiplex interplay of germ cells with somatic cells, endocrine and paracrine factors, growth factors, and signaling molecules contributes to the regulation of spermatogenesis. A cell-tocell communication within the testes of these factors is a fundamental requirement of normal spermatogenesis. A noteworthy development has been made recently on discovering the effects of different somatic cells including Leydig, Sertoli, and peritubular myoid cells on manipulation the fate of spermatogonial stem cells. In this review, we discuss the self-renewal, differentiation, and apoptotic roles of somatic cells and the relationship between somatic and germ cells during normal spermatogenesis. We also summarize the roles of different growth factors, their paracrine/endocrine/autocrine pathways, and the different cytokines associated with spermatogenesis. Furthermore, we highlight important matters for further studies on the regulation of spermatogenesis. This review presents an insight into the mechanism of spermatogenesis, and helpful in developing better understanding of the functions of somatic cells, particularly in stallions and would offer new research goals for developing curative techniques to address infertility/subfertility in stallions.
Keywords
Somatic cells; Growth factors; Spermatogenesis; Infertility; Spermatogonial stem cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Woodruff TK, Besecke LM, Groome N, Draper LB, Schwartz NB, Weiss J. Inhibin A and inhibin B are inversely correlated to follicle-stimulating hormone, yet are discordant during the follicular phase of the rat estrous cycle, and inhibin A is expressed in a sexually dimorphic manner. Endocrinology. 1996;137:5463-7. https://doi.org/10.1210/endo.137.12.8940372   DOI
2 Nagata S, Tsunoda N, Nagamine N, Tanaka Y, Taniyama H, Nambo Y, et al. Testicular inhibin in the stallion: cellular source and seasonal changes in its secretion. Biol Reprod. 1998;59:62-8. https://doi.org/10.1095/biolreprod59.1.62   DOI
3 Taya K, Nagata S, Tsunoda N, Nagamine N, Tanaka Y, Nagaoka K, et al. Testicular secretion of inhibin in stallions. J Reprod Fertil Suppl. 2000;56:43-50.
4 Pierik FH, Vreeburg JTM, Stijnen T, de Jong FH, Weber RFA. Serum inhibin B as a marker of spermatogenesis. J Clin Endocrinol Metab. 1998;83:3110-4. https://doi.org/10.1210/jcem.83.9.5121   DOI
5 Kumanov P, Nandipati K, Tomova A, Agarwal A. Inhibin B is a better marker of spermatogenesis than other hormones in the evaluation of male factor infertility. Fertil Steril. 2006;86:332-8. https://doi.org/10.1016/j.fertnstert.2006.01.022   DOI
6 Arai KY, Tanaka Y, Taniyama H, Tsunoda N, Nambo Y, Nagamine N, et al. Expression of inhibins, activins, insulin-like growth factor-I and steroidogenic enzymes in the equine placenta. Domest Anim Endocrinol. 2006;31:19-34. https://doi.org/10.1016/j.domaniend.2005.09.005   DOI
7 Roser JF. Regulation of testicular function in the stallion: an intricate network of endocrine, paracrine and autocrine systems. Anim Reprod Sci. 2008;107:179-96. https://doi.org/10.1016/j.anireprosci.2008.05.004   DOI
8 Tsogtgerel M, Komyo N, Murase H, Hannan MA, Watanabe K, Ohtaki T, et al. Serum concentrations and testicular expressions of insulin-like peptide 3 and anti-Mullerian hormone in normal and cryptorchid male horses. Theriogenology. 2020;154:135-42. https://doi.org/10.1016/j.theriogenology.2020.05.026   DOI
9 Caprio M, Fabbrini E, Ricci G, Basciani S, Gnessi L, Arizzi M, et al. Ontogenesis of leptin receptor in rat Leydig cells. Biol Reprod. 2003;68:1199-207. https://doi.org/10.1095/biolreprod.102.007831   DOI
10 Hombach-Klonisch S, Schon J, Kehlen A, Blottner S, Klonisch T. Seasonal expression of INSL3 and Lgr8/Insl3 receptor transcripts indicates variable differentiation of Leydig cells in the roe deer testis. Biol Reprod. 2004;71:1079-87. https://doi.org/10.1095/biolreprod.103.024752   DOI
11 Sadeghian H, Anand-Ivell R, Balvers M, Relan V, Ivell R. Constitutive regulation of the Insl3 gene in rat Leydig cells. Mol Cell Endocrinol. 2005;241:10-20. https://doi.org/10.1016/j.mce.2005.03.017   DOI
12 Klonisch T, Steger K, Kehlen A, Allen WR, Froehlich C, Kauffold J, et al. INSL3 ligandreceptor system in the equine testis. Biol Reprod. 2003;68:1975-81. https://doi.org/10.1095/biolreprod.102.008466   DOI
13 Varner DD, Gibb Z, Aitken RJ. Stallion fertility: a focus on the spermatozoon. Equine Vet J. 2015;47:16-24. https://doi.org/10.1111/evj.12308   DOI
14 Mabeck LM, Jensen MS, Toft G, Thulstrup M, Andersson M, Jensen TK, et al. Fecundability according to male serum inhibin B-a prospective study among first pregnancy planners. Hum Reprod. 2005;20:2909-15. https://doi.org/10.1093/humrep/dei141   DOI
15 Stewart BL, Roser JF. Effects of age, season, and fertility status on plasma and intratesticular immunoreactive (IR) inhibin concentrations in stallions. Domest Anim Endocrinol. 1998;15:129-39. https://doi.org/10.1016/S0739-7240(97)00083-0   DOI
16 Roser JF, McCue PM, Hoye E. Inhibin activity in the mare and stallion. Domest Anim Endocrinol. 1994;11:87-100. https://doi.org/10.1016/0739-7240(94)90037-X   DOI
17 Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, et al. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci. 2019;76:2681-95. https://doi.org/10.1007/s00018-019-03101-9   DOI
18 Johnson L, Tatum ME. Temporal appearance of seasonal changes in numbers of Sertoli cells, Leydig cells, and germ cells in stallions. Biol Reprod. 1989;40:994-9. https://doi.org/10.1095/biolreprod40.5.994   DOI
19 Johnson L. Efficiency of spermatogenesis. Microsc Res Tech. 1995;32:385-422. https://doi.org/10.1002/jemt.1070320504   DOI
20 Johnson L, Thompson DL Jr. Age-related and seasonal variation in the Sertoli cell population, daily sperm production and serum concentrations of follicle-stimulating hormone, luteinizing hormone and testosterone in stallions. Biol Reprod. 1983;29:777-89. https://doi.org/10.1095/biolreprod29.3.777   DOI
21 Chui K, Trivedi A, Cheng CY, Cherbavaz DB, Dazin PF, Huynh ALT, et al. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant. 2011;20:619-35. https://doi.org/10.3727/096368910X536563   DOI
22 Hejmej A, Gorazd M, Kosiniak-Kamysz K, Wiszniewska B, Sadowska J, Bilinska B. Expression of aromatase and oestrogen receptors in reproductive tissues of the stallion and a single cryptorchid visualised by means of immunohistochemistry. Domest Anim Endocrinol. 2005;29:534-47. https://doi.org/10.1016/j.domaniend.2005.03.002   DOI
23 Hess MF, Roser JF. Immunocytochemical localization of cytochrome P450 aromatase in the testis of prepubertal, pubertal, and postpubertal horses. Theriogenology. 2004;61:293-9. https://doi.org/10.1016/S0093-691X(03)00237-1   DOI
24 Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012;92:577-95. https://doi.org/10.1152/physrev.00025.2011   DOI
25 Li Y, Wu Q, Li X, Von Tungeln LS, Beland FA, Petibone D, et al. In vitro effects of cannabidiol and its main metabolites in mouse and human Sertoli cells. Food Chem Toxicol. 2022;159:112722. https://doi.org/10.1016/j.fct.2021.112722   DOI
26 Costa GMJ, Avelar GF, Rezende-Neto JV, Campos-Junior PHA, Lacerda SMSN, Andrade BSC, et al. Spermatogonial stem cell markers and niche in equids. PLOS ONE. 2012;7:e44091. https://doi.org/10.1371/journal.pone.0044091   DOI
27 Hai Y, Hou J, Liu Y, Liu Y, Yang H, Li Z, et al. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin Cell Dev Biol. 2014;29:66-75. https://doi.org/10.1016/j.semcdb.2014.04.007   DOI
28 Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA. 2006;103:2474-9. https://doi.org/10.1073/pnas.0510813103   DOI
29 Tajima Y, Watanabe D, Koshimizu U, Matsuzawa T, Nishimune Y. Insulin-like growth factor-I and transforming growth factor-1α stimulate differentiation of type A spermatogonia in organ culture of adult mouse cryptorchid testes. Int J Androl. 1995;18:8-12. https://doi.org/10.1111/j.1365-2605.1995.tb00928.x   DOI
30 Chamindrani Mendis-Handagama SML, Siril Ariyaratne HB. Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod. 2001;65:660-71. https://doi.org/10.1095/biolreprod65.3.660   DOI
31 Soder O, Bang P, Wahab A, Parvinen M. Insulin-like growth factors selectively stimulate spermatogonial, but not meiotic, deoxyribonucleic acid synthesis during rat spermatogenesis. Endocrinology. 1992;131:2344-50. https://doi.org/10.1210/endo.131.5.1425434   DOI
32 Hess MF, Roser JF. The effects of age, season and fertility status on plasma and intratesticular insulin-like growth factor I concentration in stallions. Theriogenology. 2001;56:723-33. https://doi.org/10.1016/S0093-691X(01)00602-1   DOI
33 Roser JF. Endocrine and paracrine control of sperm production in stallions. Anim Reprod Sci. 2001;68:139-51. https://doi.org/10.1016/S0378-4320(01)00151-8   DOI
34 Yoon MJ, Berger T, Roser JF. Localization of insulin-like growth factor-I (IGF-I) and IGF-I receptor (IGF-IR) in equine testes. Reprod Domest Anim. 2011;46:221-8. https://doi.org/10.1111/j.1439-0531.2010.01643.x   DOI
35 Muller L, Kowalewski MP, Reichler IM, Kollar E, Balogh O. Different expression of leptin and IGF1 in the adult and prepubertal testis in dogs. Reprod Domest Anim. 2017;52:187-92. https://doi.org/10.1111/rda.12896   DOI
36 Yuan C, Chen K, Zhu Y, Yuan Y, Li M. Medaka igf1 identifies somatic cells and meiotic germ cells of both sexes. Gene. 2018;642:423-9. https://doi.org/10.1016/j.gene.2017.11.037   DOI
37 Jiang H, Zhu WJ, Li J, Chen QJ, Liang WB, Gu YQ. Quantitative histological analysis and ultrastructure of the aging human testis. Int Urol Nephrol. 2014;46:879-85. https://doi.org/10.1007/s11255-013-0610-0   DOI
38 Pellegrini M, Filipponi D, Gori M, Barrios F, Lolicato F, Grimaldi P, et al. ATRA and KL promote differentiation toward the meiotic program of male germ cells. Cell Cycle. 2008;7:3878-88. https://doi.org/10.4161/cc.7.24.7262   DOI
39 van Pelt AMM, de Rooij DG. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice. Biol Reprod. 1990;43:363-7. https://doi.org/10.1095/biolreprod43.3.363   DOI
40 Harman D. Aging: phenomena and theories. Ann NY Acad Sci. 1998;854:1-7. https://doi.org/10.1111/j.1749-6632.1998.tb09886.x   DOI
41 Hellstrom WJG, Overstreet JW, Sikka SC, Denne J, Ahuja S, Hoover AM, et al. Semen and sperm reference ranges for men 45 years of age and older. J Androl. 2006;27:421-8. https://doi.org/10.2164/jandrol.05156   DOI
42 Sayed RKA, Mokhtar DM, Fernandez-Ortiz M, Fernandez-Martinez J, Aranda-Martinez P, Escames G, et al. Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging. Aging. 2020;12:12648-68. https://doi.org/10.18632/aging.103654   DOI
43 Sayed RKA, Mokhtar DM, Fernandez-Ortiz M, Escames G, Acuna-Castroviejo D. Retinoid-related orphan nuclear receptor alpha (RORα)-deficient mice display morphological testicular defects. Lab Invest. 2019;99:1835-49. https://doi.org/10.1038/s41374-019-0299-5   DOI
44 Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S. Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. J Cell Sci. 2003;116:3363-72. https://doi.org/10.1242/jcs.00650   DOI
45 Jin W, Wada S, Arai KY, Kishi H, Herath CB, Watanabe G, et al. Testicular secretion of inhibin in the male golden hamster: (Mesocricetus auratus). J Androl. 2001;22:207-11. https://doi.org/10.1002/j.1939-4640.2001.tb02173.x   DOI
46 Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, et al. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev. 2014;35:747-94. https://doi.org/10.1210/er.2014-1003   DOI
47 McNeilly AS, Souza CJ, Baird DT, Swanston IA, McVerry J, Crawford J, et al. Production of inhibin A not B in rams: changes in plasma inhibin A during testis growth, and expression of inhibin/activin subunit mRNA and protein in adult testis. Reproduction. 2002;123:827-35. https://doi.org/10.1530/rep.0.1230827   DOI
48 Kaneko H, Noguchi J, Kikuchi K, Hasegawa Y. Molecular weight forms of inhibin A and inhibin B in the bovine testis change with age. Biol Reprod. 2003;68:1918-25. https://doi.org/10.1095/biolreprod.102.012856   DOI
49 Weng Q, Medan MS, Watanabe G, Tsubota T, Tanioka Y, Taya K. Immunolocalization of steroidogenic enzymes P450scc, 3βHSD, P450c17, and P450arom in Gottingen miniature pig testes. J Reprod Dev. 2005;51:299-304. https://doi.org/10.1262/jrd.16077   DOI
50 Hedger MP, Winnall WR. Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol Cell Endocrinol. 2012;359:30-42. https://doi.org/10.1016/j.mce.2011.09.031   DOI
51 Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, et al. Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol. 2013;27:63-73. https://doi.org/10.1210/me.2012-1256   DOI
52 Feng LX, Chen Y, Dettin L, Pera RAR, Herr JC, Goldberg E, et al. Generation and in vitro differentiation of a spermatogonial cell line. Science. 2002;297:392-5. https://doi.org/10.1126/science.1073162   DOI
53 Yang Y, Feng Y, Feng X, Liao S, Wang X, Gan H, et al. BMP4 cooperates with retinoic acid to induce the expression of differentiation markers in cultured mouse spermatogonia. Stem Cells Int. 2016;2016:9536192. https://doi.org/10.1155/2016/9536192   DOI
54 Jung H, Song H, Yoon M. The KIT is a putative marker for differentiating spermatogonia in stallions. Anim Reprod Sci. 2015;152:39-46. https://doi.org/10.1016/j.anireprosci.2014.11.004   DOI
55 Feng LX, Ravindranath N, Dym M. Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. J Biol Chem. 2000;275:25572-6. https://doi.org/10.1074/jbc.M002218200   DOI
56 Donnelly CL, Staub C, Varner D, Blanchard T, Johnson L, Forrest DW. The effects of growth factor on testicular germ cell apoptosis in the stallion. J Equine Vet Sci. 2007;27:212-6. https://doi.org/10.1016/j.jevs.2007.04.003   DOI
57 Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287:1489-93. https://doi.org/10.1126/science.287.5457.1489   DOI
58 He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M. Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 2008;26:266-78. https://doi.org/10.1634/stemcells.2007-0436   DOI
59 Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol. 2005;279:114-24. https://doi.org/10.1016/j.ydbio.2004.12.006   DOI
60 Teubner A, Muller K, Bartmann CP, Sieme H, Klug E, Zingrebe B, et al. Effects of an anabolic steroid (Durateston) on testicular angiogenesis in peripubertal stallions. Theriogenology. 2015;84:323-32. https://doi.org/10.1016/j.theriogenology.2015.03.022   DOI
61 Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA. 2004;101:16489-94. https://doi.org/10.1073/pnas.0407063101   DOI
62 Allan DJ, Harmon BV, Roberts SA. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif. 1992;25:241-50. https://doi.org/10.1111/j.1365-2184.1992.tb01399.x   DOI
63 Welt C, Sidis Y, Keutmann H, Schneyer A. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med. 2002;227:724-52. https://doi.org/10.1177/153537020222700905   DOI
64 Gao T, Lin M, Wu Y, Li K, Liu C, Zhou Q, et al. Transferrin receptor (TFRC) is essential for meiotic progression during mouse spermatogenesis. Zygote. 2021;29:169-75. https://doi.org/10.1017/S0967199420000659   DOI
65 Zhang Z, Gong Y, Guo Y, Hai Y, Yang H, Yang S, et al. Direct transdifferentiation of spermatogonial stem cells to morphological, phenotypic and functional hepatocyte-like cells via the ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E. Cell Commun Signal. 2013;11:67. https://doi.org/10.1186/1478-811X-11-67   DOI
66 Antonio-Cabrera E, Paredes RG. Effects of chronic estradiol or testosterone treatment upon sexual behavior in sexually sluggish male rats. Pharmacol Biochem Behav. 2012;101:336-41. https://doi.org/10.1016/j.pbb.2012.01.021   DOI
67 Parlevliet JM, Pearl CA, Hess MF, Famula TR, Roser JF. Immunolocalization of estrogen and androgen receptors and steroid concentrations in the stallion epididymis. Theriogenology. 2006;66:755-65. https://doi.org/10.1016/j.theriogenology.2005.12.013   DOI
68 Pearl CA, Mason H, Roser JF. Immunolocalization of estrogen receptor alpha, estrogen receptor beta and androgen receptor in the pre-, peri- and post-pubertal stallion testis. Anim Reprod Sci. 2011;125:103-11. https://doi.org/10.1016/j.anireprosci.2011.03.007   DOI
69 Bilinska B, Hejmej A, Gancarczyk M, Sadowska J. Immunoexpression of androgen receptors in the reproductive tract of the stallion. Ann NY Acad Sci. 2005;1040:227-9. https://doi.org/10.1196/annals.1327.030   DOI
70 Jarow JP, Zirkin BR. The androgen microenvironment of the human testis and hormonal control of spermatogenesis. Ann NY Acad Sci. 2005;1061:208-20. https://doi.org/10.1196/annals.1336.023   DOI
71 Willems A, Roesl C, Mitchell RT, Milne L, Jeffery N, Smith S, et al. Sertoli cell androgen receptor signalling in adulthood is essential for post-meiotic germ cell development. Mol Reprod Dev. 2015;82:626-7. https://doi.org/10.1002/mrd.22506   DOI
72 Welsh M, Saunders PTK, Atanassova N, Sharpe RM, Smith LB. Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J. 2009;23:4218-30. https://doi.org/10.1096/fj.09-138347   DOI
73 Haider SG. Cell biology of Leydig cells in the testis. Int Rev Cytol. 2004;233:181-241. https://doi.org/10.1016/S0074-7696(04)33005-6   DOI
74 Stanton PG, Sluka P, Foo CFH, Stephens AN, Smith AI, McLachlan RI, et al. Proteomic changes in rat spermatogenesis in response to in vivo androgen manipulation; impact on meiotic cells. PLOS ONE. 2012;7:e41718. https://doi.org/10.1371/journal.pone.0041718   DOI
75 O'Donnell L, McLachlan RI, Wreford NG, Robertson DM. Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle. Endocrinology. 1994;135:2608-14. https://doi.org/10.1210/endo.135.6.7988449   DOI
76 O'Donnell L, McLachlan RI, Wreford NG, de Kretser DM. Testosterone withdrawal promotes stage-specific detachment of round spermatids from the rat seminiferous epithelium. Biol Reprod. 1996;55:895-901. https://doi.org/10.1095/biolreprod55.4.895   DOI
77 Bartlett JMS, Kerr JB, Sharpe RM. The effect of selective destruction and regeneration of rat Leydig cells on the intratesticular distribution of testosterone and morphology of the seminiferous epithelium. J Androl. 1986;7:240-53. https://doi.org/10.1002/j.1939-4640.1986.tb00924.x   DOI
78 Haywood M, Spaliviero J, Jimemez M, King NJC, Handelsman DJ, Allan CM. Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology. 2003;144:509-17. https://doi.org/10.1210/en.2002-220710   DOI
79 Ing NH, Forrest DW, Riggs PK, Loux S, Love CC, Brinsko SP, et al. Dexamethasone acutely down-regulates genes involved in steroidogenesis in stallion testes. J Steroid Biochem Mol Biol. 2014;143:451-9. https://doi.org/10.1016/j.jsbmb.2014.07.003   DOI
80 Pelletier RM. The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem. 2011;46:49-127. https://doi.org/10.1016/j.proghi.2011.05.001   DOI
81 Skinner MK, Griswold MD. Sertoli cell biology. Burlington, NJ: Elsevier; 2004
82 Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125:769-84. https://doi.org/10.1530/rep.0.1250769   DOI
83 Salian S, Doshi T, Vanage G. Neonatal exposure of male rats to bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology. 2009;265:56-67. https://doi.org/10.1016/j.tox.2009.09.012   DOI
84 Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, et al. Spermatogenesis and sertoli cell activity in mice lacking sertoli cell receptors for folliclestimulating hormone and androgen. Endocrinology. 2008;149:3279-85. https://doi.org/10.1210/en.2008-0086   DOI
85 Losinno AD, Morales A, Fernandez D, Lopez LA. Peritubular myoid cells from rat seminiferous tubules contain actin and myosin filaments distributed in two independent layers. Biol Reprod. 2012;86:150, 1-8. https://doi.org/10.1095/biolreprod.111.095158   DOI
86 Skinner MK, Tung PS, Fritz IB. Cooperativity between Sertoli cells and testicular peritubular cells in the production and deposition of extracellular matrix components. J Cell Biol. 1985;100:1941-7. https://doi.org/10.1083/jcb.100.6.1941   DOI
87 Nurmio M, Kallio J, Adam M, Mayerhofer A, Toppari J, Jahnukainen K. Peritubular myoid cells have a role in postnatal testicular growth. Spermatogenesis. 2012;2:79-87. https://doi.org/10.4161/spmg.20067   DOI
88 Chen LY, Willis WD, Eddy EM. Targeting the Gdnf gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proc Natl Acad Sci USA. 2016;113:1829-34. https://doi.org/10.1073/pnas.1517994113   DOI
89 Kopera IA, Bilinska B, Cheng CY, Mruk DD. Sertoli-germ cell junctions in the testis: a review of recent data. Philos Trans R Soc B Biol Sci. 2010;365:1593-605. https://doi.org/10.1098/rstb.2009.0251   DOI
90 Holdcraft RW, Braun RE. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development. 2004;131:459-67. https://doi.org/10.1242/dev.00957   DOI
91 Jung Y, Yoon M. Oxytocin receptor expression in stallion testes and epididymides. Domest Anim Endocrinol. 2021;74:106562. https://doi.org/10.1016/j.domaniend.2020.106562   DOI
92 Frayne J, Nicholson HD. Effect of oxytocin on testosterone production by isolated rat Leydig cells is mediated via a specific oxytocin receptor. Biol Reprod. 1995;52:1268-73. https://doi.org/10.1095/biolreprod52.6.1268   DOI
93 Nicholson HD, Jenkin L. 5α-Reductase activity increased by oxytocin in the rat testis. In: Bartke A, editor. Function of somatic cells in the testis. New York, NY: Springer; 1994. p. 278-85.
94 Tahri-Joutei A, Pointis G. Time-related effects of arginine vasopressin on steroidogenesis in cultured mouse Leydig cells. J Reprod Fertil. 1988;82:247-54. https://doi.org/10.1530/jrf.0.0820247   DOI
95 Inaba T, Nakayama Y, Tani H, Tamada H, Kawate N, Sawada T. Oxytocin gene expression and action in goat testis. Theriogenology. 1999;52:425-34. https://doi.org/10.1016/S0093-691X(99)00140-5   DOI
96 Assinder SJ, Johnson C, King K, Nicholson HD. Regulation of 5α-reductase isoforms by oxytocin in the rat ventral prostate. Endocrinology. 2004;145:5767-73. https://doi.org/10.1210/en.2004-0711   DOI
97 Skinner MK, Fritz IB. Identification of a non-mitogenic paracrine factor involved in mesenchymal-epithelial cell interactions between testicular peritubular cells and Sertoli cells. Mol Cell Endocrinol. 1986;44:85-97. https://doi.org/10.1016/0303-7207(86)90109-7   DOI
98 Chen LY, Brown PR, Willis WB, Eddy EM. Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology. 2014;155:4964-74. https://doi.org/10.1210/en.2014-1406   DOI
99 Quigley CA, de Bellis A, Marschke KB, El-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev. 1995;16:271-321. https://doi.org/10.1210/edrv-16-3-271   DOI
100 Welsh M, Moffat L, Belling K, de Franca LR, Segatelli TM, Saunders PTK, et al. Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells. Int J Androl. 2012;35:25-40. https://doi.org/10.1111/j.1365-2605.2011.01150.x   DOI
101 Piquet-Pellorce C, Dorval-Coiffec I, Pham MD, Jegou B. Leukemia inhibitory factor expression and regulation within the testis. Endocrinology. 2000;141:1136-41. https://doi.org/10.1210/endo.141.3.7399   DOI
102 Maekawa M, Kamimura K, Nagano T. Peritubular myoid cells in the testis: their structure and function. Arch Histol Cytol. 1996;59:1-13. https://doi.org/10.1679/aohc.59.1   DOI
103 Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development. 2009;136:1191-9. https://doi.org/10.1242/dev.032243   DOI
104 Virtanen I, Kallajoki M, Naurvaunen O, Paranko J, Thornell LE, Miettinen M, et al. Peritubular myoid cells of human and rat testis are smooth muscle cells that contain desmin-type intermediate filaments. Anat Rec. 1986;215:10-20. https://doi.org/10.1002/ar.1092150103   DOI
105 Hakovirta H, Kaipia A, Soder O, Parvinen M. Effects of activin-A, inhibin-A, and transforming growth factor-beta 1 on stage-specific deoxyribonucleic acid synthesis during rat seminiferous epithelial cycle. Endocrinology. 1993;133:1664-8. https://doi.org/10.1210/endo.133.4.8404607   DOI
106 Hess MF, Roser JF. A comparison of the effects of equine luteinizing hormone (eLH), equine growth hormone (eGH) and human recombinant insulin-like growth factor (hrIGF-I) on steroid production in cultured equine Leydig cells during sexual maturation. Anim Reprod Sci. 2005;89:7-19. https://doi.org/10.1016/j.anireprosci.2005.06.014   DOI
107 O'Shaughnessy PJ, Bennett MK, Scott IS, Charlton HM. Effects of FSH on Leydig cell morphology and function in the hypogonadal mouse. J Endocrinol. 1992;135:517-25. https://doi.org/10.1677/joe.0.1350517   DOI
108 Sipahutar H, Sourdaine P, Moslemi S, Plainfosse B, Seralini GE. Immunolocalization of aromatase in stallion Leydig cells and seminiferous tubules. J Histochem Cytochem. 2003;51:311-8. https://doi.org/10.1177/002215540305100306   DOI
109 de Kretser DM, Buzzard JJ, Okuma Y, O'Connor AE, Hayashi T, Lin SY, et al. The role of activin, follistatin and inhibin in testicular physiology. Mol Cell Endocrinol. 2004;225:57-64. https://doi.org/10.1016/j.mce.2004.07.008   DOI
110 Lejeune H, Chuzel F, Sanchez P, Durand P, Mather JP, Saez JM. Stimulating effect of both human recombinant inhibin A and activin A on immature porcine Leydig cell functions in vitro. Endocrinology. 1997;138:4783-91. https://doi.org/10.1210/endo.138.11.5542   DOI
111 Beg MA, Ginther OJ. Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction. 2006;132:365-77. https://doi.org/10.1530/rep.1.01233   DOI
112 Show MD, Anway MD, Folmer JS, Zirkin BR. Reduced intratesticular testosterone concentration alters the polymerization state of the Sertoli cell intermediate filament cytoskeleton by degradation of vimentin. Endocrinology. 2003;144:5530-6. https://doi.org/10.1210/en.2003-0735   DOI
113 Lydka M, Kotula-Balak M, Kopera-Sobota I, Tischner M, Bilinska B. Vimentin expression in testes of Arabian stallions. Equine Vet J. 2011;43:184-9. https://doi.org/10.1111/j.2042-3306.2010.00135.x   DOI