• Title/Summary/Keyword: cell culture model

Search Result 383, Processing Time 0.021 seconds

Mouse Embryo Culture used in Quality Control of Water for Human in Vitro Fertilization : The One-cell Stage Versus the Two-cell Stage Model (수질에 대한 1-세포기 및 2-세포기 생쥐배아를 이용한 생물학적 정도관리에 관한 연구)

  • Lee, Ye-Kyung;Chung, Hye-Won;Kim, Hyung-Mee;Oh, Seung-Eun;Son, Young-Soo;Yu, Han-Ki;Woo, Bock-Hee
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.20 no.1
    • /
    • pp.9-17
    • /
    • 1993
  • This study was carried out investigate the effect of water quality and the kind of media on the in vitro development of 1-cell and stage mouse embryos. $F_1$ hybrid mice were superovulated and timely mated. 1-cell stage and 2-cell stage mouse embryos were recruited and taken into Ham's F-10 or m-KRB media which was made of two of two kinds of water having different quality, highly purified water and tap water. 2-cell stage embryos grew up well in vitro to blastocyst or hatching blastocyst regardless of the composition of culture media, but 1-cell stage mouse embryo didn't develop well to blastocyst or hatching blastocyst in simple media like m-KRB. These results meant in vitro devleopment of 1-cell stage mouse embryo neded complex media like Ham's F-10 which contained abundant protein components. In case of quality control for water, in vitro fertilization program. observation of in vitro development of 2-cell mouse embryos up to blastocyst or hatching blastocyst media such as m-KRB would be efficatious in detecting the difference of water quality.

  • PDF

Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model

  • Park, Un-Chul;Cho, Myung-Soo;Park, Jung-Hyun;Kim, Sang-Jin;Ku, Seung-Yup;Choi, Young-Min;Moon, Shin-Yong;Yu, Hyeong-Gon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.216-221
    • /
    • 2011
  • Objective: To differentiate the human embryonic stem cells (hESCs) into the retinal pigment epithelium (RPE) in the defined culture condition and determine its therapeutic potential for the treatment of retinal degenerative diseases. Methods: The embryoid bodies were formed from hESCs and attached on the matrigel coated culture dishes. The neural structures consisting neural precursors were selected and expanded to form rosette structures. The mechanically isolated neural rosettes were differentiated into pigmented cells in the media comprised of N2 and B27. Expression profiles of markers related to RPE development were analyzed by reverse transcription-polymerase chain reaction and immunostaining. Dissociated putative RPE cells ($10^5$ cells/5 ${\mu}L$) were transplanted into the subretinal space of rat retinal degeneration model induced by intravenous sodium iodate injection. Animals were sacrificed at 1, 2, and 4 weeks after transplantation, and immnohistochemistry study was performed to verify the survival of the transplanted cells. Results: The putative RPE cells derived from hESC showed characteristics of the human RPE cells morphologically and expressed molecular markers and associated with RPE fate. Grafted RPE cells were found to survive in the subretinal space up to 4 weeks after transplantation, and the expression of RPE markers was confirmed with immunohistochemistry. Conclusion: Transplanted RPE cells derived from hESC in the defined culture condition successfully survived and migrated within subretinal space of rat retinal degeneration model. These results support the feasibility of the hESC derived RPE cells for cell-based therapies for retinal degenerative disease.

Three-Dimensional Culture of Thymic Epithelial Cells Using Porous PCL/PLGAComposite Polymeric Scaffolds Coated with Polydopamine (폴리도파민으로 코팅된 다공성 PCL/PLGA 복합 폴리머 지지체를 이용한 흉선상피세포의 3차원 세포배양)

  • Seung Mi Choi;Do Young Lee;Yeseon Lim;Seonyeong Hwang;Won Hoon Song;Young Hun Jeong;Sik Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.612-622
    • /
    • 2023
  • T-cell deficiency may occur in various clinical conditions including congenital defects, cell/organ transplantation, HIV infection and aging. In this regard, the development of artificial thymus has recently been attracting much attention. To achieve this aim, the development of techniques for 3D culture of thymic stromal cells is necessary because thymocytes grown only in a 3D thymic microenvironment can be differentiated fully to become mature, immunocompetent T cells; the same cannot be achieved for thymocytes grown in 2D. This study aimed to develop a nanotechnology-based 3D culture technique using polymeric scaffolds for thymic epithelial cells (TECs), the main component of thymic stromal cells. Scanning electron microscopic observation revealed that the pores of both PCL and PCL/PLGA scaffolds were filled with TECs. Interestingly, TECs grown in 3D on polydopamine-coated scaffolds exhibited enhanced cell attachment and proliferation compared to those grown on non-coated scaffolds. In addition, the gene expression of thymopoietic factors was upregulated in TECs cultured in 3D on polydopamine-coated scaffolds compared to those cultured in 2D. Taken together, the results of the present study demonstrate an efficient 3D culture model for TECs using polymeric scaffolds and provide new insights into a novel platform technology that can be applied to develop functional, biocompatible scaffolds for the 3D culture of thymocytes. This will eventually shed light on techniques for the in vitro development of T cells as well as the synthesis of artificial thymus.

Co-Culture Model Using THP-1 Cell and HUVEC on AGEs-Induced Expression of Cytokines and RAGE (THP-1 Cell과 HUVEC을 이용한 Co-Culture Model System에서 최종당화산물에 의한 Cytokines와 RAGE 발현)

  • Lee, Kwang-Won;Lee, Hyun-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.3
    • /
    • pp.385-392
    • /
    • 2011
  • Although monoculture methods have been remarkably useful due to their simplicity, they have serious limitation because of the different types of cells communication with each other in many physiological situations. We demonstrated levels of markers of endothelial dysfunction such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-1$\beta$ (IL-1$\beta$) as well as stimulation of receptor of advanced glycation endproducts (AGEs) on monoand co-culture system such as only monocyte (THP-1) cultivation system, only endothelial cell (HUVEC) cultivation system, and co-cultivation system of THP-1 and HUVEC. The mRNA levels of TNF-$\alpha$ and IL-1$\beta$ on HUVEC increased by the co-culture with monocyte after 4 hr at 100 ${\mu}g/mL$ glyceraldehyde-AGE. The secreted protein contents into medium of TNF-$\alpha$ and IL-1$\beta$ increased after 8 hr approximately 2~2.5 times compared to mono-cultivation. In contrast, the mRNA level of receptor of AGE (RAGE) was relatively insensitive on the co-culture system. The mediators by which monocytes activate endothelial cell have not been fully elucidated. In this study we confirmed production of soluble cytokines such as TNF-$\alpha$ and IL-1$\beta$ by monocytes. Use of monocyte conditioned medium, which contains both cytokines, can activate endothelial cell.

Development of complete Culture System for Quail Embryos and Its Application for Embryo Manipulation

  • Ono, T.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.155-163
    • /
    • 2001
  • Gene and cell transfer technique will serve as a powerful tool for the genetic improvement of the poultry and to yield useful products. For avian transgenesis, Japanese quail may serve as an excellent animal model because of its small body size and fast growth rate. Recent progress was described on the manipulation of quail embryos such as the introduction of foreign genes and cells, and the subsequent culturing of the manipulated embryos yielding hatchlings. Intraspecific donor-derived offspring have been available in quail, however, further investigation will be required to obtain interspecific offspring with the aim of rescuing endangered species. Trans genesis will also be useful for improving the profitability and quality of poultry stocks and for developing stocks with novel uses. Considerable progress should soon be made toward the production of transgenic poultry. The key feature of the procedure described here is that embryos are initially taken out from the shell for ease of manipulation and then placed back in culture in addition to various operations midway during culture.

  • PDF

Changes in pre-osteoblast cells associated with non-precious metal cores with dental implants: Pilot test (치과용 임플란트 적용 비귀금속 코어와 관련된 전조골세포의 변화)

  • Park, Jung-Hyun;Kang, Seen-Young;Kim, Jong-Woo;Kim, Jang-Ju;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the non-precious metal core materials used in the dental laboratory to fabricate the implant superstructure by CAD / CAM method. And to observe and compare the morphology and distribution of the osteoblasts in relation to implant osseointegration. Methods: In this study, the mandibular right first molar tooth model was selected as an international standard to produce a single core. Using this model, the impression was made with the silicone rubber, the tooth model was scanned, and a single core was designed and 5-axis milling was performed. The materials used were Cobalt-Chromium and Nickel-Chromium, and the cores for dental implant top structures were fabricated according to the procedures of the dental labs. After the fabrication, the marginal area of the core was separated and cell culture experiment was performed. The osteoblast cells used MC3T3-E1, which is currently widely used. For morphological analysis of osteoblasts, cells were posttreated and observed using CLSM (Confocal Laser Scanning Microscope) and compared. Results: The cell adhesion behavior of the specimen surface measured by CLSM was uniformly distributed in specimen A (Cobalt-Chromium) than in specimen B (Nickel-Chromium). The distribution and changes of the cells were different in the two specimens. Conclusion : It is possible to confirm that specimen A (Cobalt-Chromium) is suitable for the living body through adhesion and proliferation of osteoblasts related to implant osseointegration in the non-precious metal superstructure used after implantation. It is considered that it is preferable to use Co-Cr when fabricating the superstructure.

In Vitro Culture of Nontransformed Cell Lines Derived from Rat Endometrial Epithelium and Stroma (흰쥐 자궁 상피와 내막에서 기원한 세포주의 체외배양)

  • Kang, Byung-Moon;Lee, Suk-Won;Chae, Hee-Dong;Kang, Eun-Hee;Chu, Hyung-Sik;Kim, Chung-Hoon;Chang, Yoon-Seok;Nam, Joo-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.1
    • /
    • pp.83-87
    • /
    • 1999
  • Since the blastocyst is broken and spreads out on a flat plastic culture dish (two dimensional culture) during in vitro development, it has been difficult to study the implantation process. It also has been difficult to analyse the interactions between endometrial epithelial and stromal cells because of the lack of a long-term in vitro model which can stimulate in vivo characteristics, as these cells eventually fail to proliferate or cease to express differentiated functions. Recently nontransformed cell lines, CUE-P and CUS-V2, derived from rat endometrial epithelium and stroma were reported. In this study, morphology of CUE-P and CUS-V2 was examined and oxytocin gene expression by CUE-P cells was demonstrated by RT-PCR. The CUE-P cells have a cuboidal morphology and CUS-V2 cells resemble fibroblast and exhibit a spindle-like morphology. In RT-PCR, same size of PCR products of oxytocin gene at hypothalamus, uterus and CUE-P cells were demonstrated. These results showed three dimensional culture system could be made by using the new cell lines.

  • PDF

Characterizations of Cell Lineage Markers in the Bone Marrow Cells of Recloned GFP Pigs for Possible Use of Stem Cell Population

  • Park, Kwang-Wook;Choi, Sung-Sik;Lee, Dong-Ho;Lee, Hwang;Choi, Seung-Kyu;Park, Chang-Sik;Lee, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • Two piglets and one juvenile pig were used to investigate closely what types of cells express green fluorescent protein (GFP) and if any, whether the GFP-tagged cells could be used for stem cell transplantation research as a middle-sized animal model in bone marrow cells of recloned GFP pigs. Bone marrow cells were recovered from the tibia, and further analyzed with various cell lineage markers to determine which cell lineage is concurrently expressing visible GFP in each individual animal. In the three animals, visible GFP were observed only in proportions of the plated cells immediately after collection, showing 41, 2 and 91% of bone marrow cells in clones #1, 2 and 3, respectively. The intensity of the visible GFP expression was variable even in an individual clone depending on cell sizes and types. The overall intensities of GFP expression were also different among the individual clones from very weak, weak to strong. Upon culture for 14 days in vitro (14DIV), some cell types showed intensive GFP expression throughout the cells; in particular, in cytoskeletons and the nucleus, on the other hand. Others are shown to be diffused GFP expression patterns only in the cytoplasm. Finally, characterization of stem cell lineage markers was carried out only in the clone #3 who showed intensive GFP expression. SSEA-1, SSEA-3, CD34, nestin and GFAP were expressed in proportions of the GFP expressing cells, but not all of them, suggesting that GFP expression occur in various cell lineages. These results indicate that targeted insertion of GFP gene should be pursued as in mouse approach to be useful for stem cell research. Furthermore, cell- or tissue-specific promoter should also be used if GFP pig is going to be meaningful for a model for stem cell transplantation.

Isolation of lysozyme producing bacteria capable of solubilizing microbial cells (미생물 용해가 가능한 Iysozyme 분비 균주의 분리 및 특성)

  • Guo, Pengfei;Seo, Sun-Keun;Zhang, Lei;Kim, Hyo-Sang;Oh, Young-Khee;Jahng, Deok-Jin
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.187-192
    • /
    • 2008
  • Lysozyme-producing microorganisms were isolated to obtain bacteria which can efficiently solubilize microbial cells. Cells of normal and chloroform-treated Escherichia coli and Micrococcus Iysodeikticus were used as model substrates to isolate lysozyme-producing microorganisms and investigate the efficiency of cell lysis. The culture supernatant of the isolate New1 (98% similarity of 16S rDNA sequence with Thermomonas haemolytica) showed different lytic characteristics for different substrates. Thermal treatment (autoclave) of substrate cells showed a significant effect on cell solubilization by culture supernatant of the New1. For autoclaved substrate cells, E. coli, M. Iysodeikticus and chloroform-treated E. coli were solubilized by 58.7%, 49.4% and 79.1%, respectively, in the culture supernatant of New1. The lytic activity of New1 was mainly caused by lysozyme produced by the isolate. It was also showed that New1 exhibited high protease activity and a little cellulase activity.

Control of Glucose Concentration in a Fed-Batch Cultivation of Scutellaria baicalensis G. Plant Cells a Self-Organizing Fuzzy Logic Controller

  • Choi, Jeong-Woo;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.739-748
    • /
    • 2001
  • A self-organizing fuzzy logic controller using a genetic algorithm is described, which controlled the glucose concentration for the enhancement of flavonoid production in a fed-batch cultivation of Scutellaria baicalensis G. plant cells. The substrate feeding strategy in a fed-batch culture was to increase the flavonoid production by using the proposed kinetic model. For the two-stage culture, the substrate feeding strategy consisted of a first period with 28 g/I of glucose to promote cell growth, followed by a second period with 5 g/I of glucose to promote flavonoid production. A simple fuzzy logic controller and the self-organizing fuzzy logic controller using a genetic algorithm was constructed to control the glucose concentration in a fed-batch culture. The designed fuzzy logic controllers were applied to maintain the glucose concentration at given set-points of the two-stage culture in fed-batch cultivation. The experimental results showed that the self-organizing fuzzy logic controller improved the controller\`s performance, compared with that of the simple fuzzy logic controller. The specific production yield and productivity of flavonoids in the two-stage culture were higher than those in the batch culture.

  • PDF