DOI QR코드

DOI QR Code

Co-Culture Model Using THP-1 Cell and HUVEC on AGEs-Induced Expression of Cytokines and RAGE

THP-1 Cell과 HUVEC을 이용한 Co-Culture Model System에서 최종당화산물에 의한 Cytokines와 RAGE 발현

  • Lee, Kwang-Won (Division of Food Bioscience & Technology, College of Life Science and Biotechnology, Korea University) ;
  • Lee, Hyun-Sun (Dept. Food and Nutrition and Institute of Health Science, Korea University)
  • 이광원 (고려대학교 식품공학부) ;
  • 이현순 (고려대학교 식품영양학과 및 보건과학연구소)
  • Received : 2011.01.06
  • Accepted : 2011.02.28
  • Published : 2011.03.31

Abstract

Although monoculture methods have been remarkably useful due to their simplicity, they have serious limitation because of the different types of cells communication with each other in many physiological situations. We demonstrated levels of markers of endothelial dysfunction such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-1$\beta$ (IL-1$\beta$) as well as stimulation of receptor of advanced glycation endproducts (AGEs) on monoand co-culture system such as only monocyte (THP-1) cultivation system, only endothelial cell (HUVEC) cultivation system, and co-cultivation system of THP-1 and HUVEC. The mRNA levels of TNF-$\alpha$ and IL-1$\beta$ on HUVEC increased by the co-culture with monocyte after 4 hr at 100 ${\mu}g/mL$ glyceraldehyde-AGE. The secreted protein contents into medium of TNF-$\alpha$ and IL-1$\beta$ increased after 8 hr approximately 2~2.5 times compared to mono-cultivation. In contrast, the mRNA level of receptor of AGE (RAGE) was relatively insensitive on the co-culture system. The mediators by which monocytes activate endothelial cell have not been fully elucidated. In this study we confirmed production of soluble cytokines such as TNF-$\alpha$ and IL-1$\beta$ by monocytes. Use of monocyte conditioned medium, which contains both cytokines, can activate endothelial cell.

Glyceraldehyde를 이용하여 제조된 AGEs 화합물(glycer-AGEs)을 단구세포인 THP-1, 혈관내피세포인 HUVEC 및 이 두 세포가 동시에 배양된 system에서 100 ${\mu}g/mL$로 처리 후 24시간까지 처리시간을 달리하여 처리하였다. 배양시간 동안 각 세포와 배양액을 회수하여 TNF-$\alpha$와 IL-1$\beta$의 발현을 mRNA 수준에서 조사하였다. 그 결과, THP-1의 경우 배양 2시간에서 TNF-$\alpha$나 IL-1$\beta$의 mRNA 발현이 대조구에 비해 증가되었으나 혈관내피세포인 HUVEC의 경우에는 24시간 배양하는 동안 유의적인 차이가 없었다. 그러나 두세포를 동시에 배양한 system에서 혈관내피세포인 HUVEC의 경우에는 배양 4시간에서 대조구보다 TNF-$\alpha$의 발현은 4.4배, IL-1$\beta$의 경우 5.5배 정도 증가되는 것을 확인할 수 있었다. TNF-$\alpha$와 IL-1$\beta$의 배지 내에서의 농도를 측정해 본 결과, THP-1만 배양한 경우 대조구의 배지 내 TNF-$\alpha$ 함량이 배양 6시간에 98.2 pg/mL로 대조구 53.8 pg/mL보다 증가하였으며 HUVEC의 경우 배양 8시간에 93.3 pg/mL로 증가하였다. 그러나 co-culture의 경우 배양 4시간부터 증가하여 배양 8시간에 199.2 pg/mL로 증가하였다. RAGE는 TNF-$\alpha$와 IL-1$\beta$의 발현 pattern과 다르게 단독 및 co-culture에서 배양 16시간에 대조구에 비해 각각 1.6배, 24시간에 1.9배 증가하였다. 따라서 본 연구 결과 최종당화산물에 의해 혈관내피세포의 기능상실의 연구에 있어 co-culture조건이 유용하며, 특히 mRNA 수준에서는 4시간에, protein 수준에서는 8시간에 효능을 측정하면 유효성 있는 연구 성과를 얻을 있을 것으로 예측할 수 있었다.

Keywords

References

  1. Monnier VM, Elmets CA, Frank KE, Vishwanath V, YamashitaT. 1986. Age-related normalization of the browning rate of collagen in diabetic subjects without retinopathy.J Clin Invest 78: 832-835. https://doi.org/10.1172/JCI112648
  2. Vishwanath V, Frank KE, Elmets CA, Dauchot PJ, MonnierVM. 1986. Glycation of skin collagen in type I diabetes mellitus. Correlation with long-term complications. Diabetes35: 916-921. https://doi.org/10.2337/diabetes.35.8.916
  3. Mullarkey CJ, Edelstein D, Brownlee M. 1990. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173: 932-939. https://doi.org/10.1016/S0006-291X(05)80875-7
  4. Makita Z, Bucala R, Rayfield EJ, Friedman EA, KaufmanAM, Korbet SM, Barth RH, Winston JA, Fuh H, ManogueKR. 1994. Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet 343: 1519-1522. https://doi.org/10.1016/S0140-6736(94)92935-1
  5. Hammes HP, Alt A, Niwa T, Clausen JT, Bretzel RG,Brownlee M, Schleicher ED. 1999. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia 42: 728-736. https://doi.org/10.1007/s001250051221
  6. Bucala R, Vlassara H. 1995. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis 26: 875-888. https://doi.org/10.1016/0272-6386(95)90051-9
  7. Hsieh CL, Lin YC, Ko WS, Peng CH, Huang CN, Peng RY.2005. Inhibitory effect of some selected nutraceutic herbs on LDL glycation induced by glucose and glyoxal. J Ethnopharmacol 102: 357-363. https://doi.org/10.1016/j.jep.2005.06.044
  8. Ma H, Li SY, Xu P, Babcock SA, Dolence EK, BrownleeM, Li J, Ren J. 2009. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) upregulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 13: 1751-1764. https://doi.org/10.1111/j.1582-4934.2008.00547.x
  9. Sobenin IA, Tertov VV, Koschinsky T, Bunting CE,Slavina ES, Dedov II, Orekhov AN. 1993. Modified low density lipoprotein from diabetic patients causes cholesterol accumulation in human intimal aortic cells. Atherosclerosis100: 41-54. https://doi.org/10.1016/0021-9150(93)90066-4
  10. Magalhaes PM, Appell HJ, Duarte JA. 2008. Involvement of advanced glycation end products in the pathogenesis of diabetic complications: the protective role of regular physical activity. Eur Rev Aging Phys A 5: 17-29. https://doi.org/10.1007/s11556-008-0032-7
  11. Goh SY, Cooper ME. 2008. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93: 1143-1152. https://doi.org/10.1210/jc.2007-1817
  12. Lue LF, Walker DG, Brachova L, Beach TG, Rogers J,Schmidt AM, Stern DM, Yan SD. 2001. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp Neurol 171: 29-45. https://doi.org/10.1006/exnr.2001.7732
  13. Linden E, Cai W, He JC, Xue C, Li Z, Winston J, VlassaraH, Uribarri J. 2008. Endothelial dysfunction in patients with chronic kidney disease results from advanced glycation end products (AGE)-mediated inhibition of endothelial nitric oxide synthase through RAGE activation. Clin J Am Soc Nephrol 3: 691-698. https://doi.org/10.2215/CJN.04291007
  14. Lo CY, Li S, Tan D, Pan MH, Sang S, Ho CT. 2006.Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Mol Nutr Food Res 50: 1118-1128. https://doi.org/10.1002/mnfr.200600094
  15. Takada M, Ku Y, Toyama H, Suzuki Y, Kuroda Y. 2002.Suppressive effects of tea polyphenol and conformational changes with receptor for advanced glycation end products (RAGE) expression in human hepatoma cells. Hepatogastroenterology49: 928-931.
  16. Ahmad MS, Ahmed N. 2006. Antiglycation properties of aged garlic extract: possible role in prevention of diabetic complications. J Nutr 136: 796S-799S. https://doi.org/10.1093/jn/136.3.796S
  17. Lee HS, Koo YC, Suh HJ, Kim KY, Lee KW. 2010.Preventive effects of chebulic acid isolated from Terminalia chebula on advanced glycation endproduct-induced endothelial cell dysfunction. J Ethnopharmacol 131: 567-574. https://doi.org/10.1016/j.jep.2010.07.039
  18. Speciale A, Canali R, Chirafisi J, Saija A, Virgili F, Cimino F. 2010. Cyanidin-3-O-glucoside protection against TNF-alpha-induced endothelial dysfunction: involvement of nuclear factor-kappaB signaling. J Agric Food Chem 58:12048-12054. https://doi.org/10.1021/jf1029515
  19. Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC,Jialal I. 2008. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 93: 578-583. https://doi.org/10.1210/jc.2007-2185
  20. Basta G, Schmidt AM, De Caterina R. 2004. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res63: 582-592. https://doi.org/10.1016/j.cardiores.2004.05.001
  21. Takeuchi M, Makita Z, Bucala R, Suzuki T, Koike T,Kameda Y. 2000. Immunological evidence that non-carbox-ymethyllysineadvanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo. Mol Med 6: 114-125.
  22. Okamoto T, Yamagishi S, Inagaki Y, Amano S, TakeuchiM, Kikuchi S, Ohno S, Yoshimura A. 2002. Incadronate disodium inhibits advanced glycation end products-induced angiogenesis in vitro. Biochem Biophys Res Commun 297:419-424. https://doi.org/10.1016/S0006-291X(02)02218-0
  23. Niiya Y, Abumiya T, Shichinohe H, Kuroda S, Kikuchi S,Ieko M, Yamagishi S, Takeuchi M, Sato T, Iwasaki Y. 2006.Susceptibility of brain microvascular endothelial cells to advanced glycation end products-induced tissue factor upregulation is associated with intracellular reactive oxygen species. Brain Res 1108: 179-187. https://doi.org/10.1016/j.brainres.2006.06.038
  24. Tsouknos A, Nash GB, Rainger GE. 2003. Monocytes initiate a cycle of leukocyte recruitment when cocultured with endothelial cells. Atherosclerosis 170: 49-58. https://doi.org/10.1016/S0021-9150(03)00288-0
  25. Shibata M, Hariya T, Hatao M, Ashikaga T, Ichikawa P. 1999. Quantitative polymerase chain reaction using an external control mRNA for determination of gene expression in a heterogeneous cell population. Toxicol Sci 49: 290-296. https://doi.org/10.1093/toxsci/49.2.290
  26. Tanji K, Mori F, Imaizumi T, Yoshida H, Matsumiya T,Tamo W, Yoshimoto M, Odagiri H, Sasaki M, TakahashiH, Satoh K, Wakabayashi K. 2002. Upregulation of $\alpha$-synuclein by lipopolysaccharide and interleukin-1 in human macrophages. Pathology International 52: 572-577. https://doi.org/10.1046/j.1440-1827.2002.01385.x
  27. Heraud JM, Lavergne A, Kazanji M. 2002. Molecular cloning, characterization, and quantification of squirrel monkey (Saimiri sciureus) Th1 and Th2 cytokines. Immunogenetics 54: 20-29. https://doi.org/10.1007/s00251-002-0443-y
  28. Lee SJ, Lee WK. 2007. Protective effect of (-)-epigallocatechin gallate against advanced glycation endproducts-induced injury in neuronal cells. Biol Pharm Bull 30: 1369-1373. https://doi.org/10.1248/bpb.30.1369
  29. Khalifah RG, Baynes JW, Hudson BG. 1999. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun 257: 251-258. https://doi.org/10.1006/bbrc.1999.0371
  30. Sato T, Shimogaito N, Wu X, Kikuchi S, Yamagishi S,Takeuchi M. 2006. Toxic advanced glycation end products (TAGE) theory in Alzheimer's disease. Am J Alzheimers Dis Other Demen 21: 197-208. https://doi.org/10.1177/1533317506289277
  31. Munch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ,Vlassara H, Smith MA, Perry G, Riederer P. 1998.Alzheimer's disease-synergistic effects of glucose deficit,oxidative stress and advanced glycation endproducts. J Neural Transm 105 : 439-461. https://doi.org/10.1007/s007020050069
  32. Matsuse T, Ohga E, Teramoto S, Fukayama M, Nagai R,Horiuchi S, Ouchi Y. 1988. Immunohistochemical localisation of advanced glycation end products in pulmonary fibrosis. J Clin Pathol 51: 515-519.
  33. Dunon D, Piali L, Imhof B. 1996. To stick or not to stick-the new leukocyte homing paradigm. Curr Opin Cell Biol 8:714-723. https://doi.org/10.1016/S0955-0674(96)80114-1