• Title/Summary/Keyword: cavity expansion

Search Result 168, Processing Time 0.025 seconds

Application of Matched Asymptotic Expansion for Designing a Leading Edge of Super-cavitating Foil

  • Yim, Bo-hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.2
    • /
    • pp.11-18
    • /
    • 1997
  • The leading edge of a low-drag super-cavitating foil has been made to be thick enough by using a point drag which is supposed to be a linear model of the Kirchhoff lamina. In the present paper, the relation between the point drag and the Kirchhoff lamina is made clear by analyzing the cavity drag of both models and the leading edge radius of the point drag model and the lamina thickness of Kirchhoff\`s profile K. The matched asymptotic expansion is effectively made use of in designing a practical super-cavitating fool which is not only of low drag but also structurally sound. Also it has a distinct leading edge cavity separation point. The cavity foil shapes of trans-cavitating propeller blade sections designed by present method are shown.

  • PDF

A novel approach for predicting lateral displacement caused by pile installation

  • Li, Chao;Zou, Jin-feng;Li, Lin
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.147-154
    • /
    • 2020
  • A novel approach for predicting lateral displacement caused by pile installation in anisotropic clay is presented, on the basis of the cylindrical and spherical cavities expansion theory. The K0-based modified Cam-clay (K0-MCC) model is adopted for the K0-consolidated clay and the process of pile installation is taken as the cavity expansion problem in undrained condition. The radial displacement of plastic region is obtained by combining the cavity wall boundary and the elastic-plastic (EP) boundary conditions. The predicted equations of lateral displacement during single pile and multi-pile installation are proposed, and the hydraulic fracture problem in the vicinity of the pile tip is investigated. The comparison between the lateral displacement obtained from the presented approach and the measured data from Chai et al. (2005) is carried out and shows a good agreement. It is suggested that the presented approach is a useful tool for the design of soft subsoil improvement resulting from the pile installation.

Study on Behavior Characteristics of Embedded PCB for FCCSP Using Numerical Analysis (수치해석을 이용한 FCCSP용 Embedded PCB의 Cavity 구조에 따른 거동특성 연구)

  • Cho, Seunghyun;Lee, Sangsoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we used FEM technique to perform warpage and von Mises stress analysis on PCB according to the cavity structures of embedded PCB for FCCSP and the types of prepreg material. One-half substrate model and static analysis are applied to the FEM. According to the analysis results of the warpage, as the gap between the cavity and the chip increased, warpage increased and warpage increased when prepreg material with higher modularity and thermal expansion coefficient was applied. The analysis results of the von Mises stress show that the effect of the gap between the cavity and the chip varies depending on prepreg material. In other words, when material whose coefficient of thermal expansion is significantly higher than that of core material, the stress increased as the gap between the cavity and the chip increased. When the prepreg with the coefficient of thermal expansion lower than the core material is applied, the result of stress is opposite. These results indicate that from a reliability perspective, there is a correlation between the structure of the cavity where embedded chips are loaded and prepreg material.

Experimental Study on Ground Subsidence and Underground Cavity Expansion under Various Conditions (다양한 조건에 따른 지반함몰과 지중공동 확장에 대한 실험적 연구)

  • Jeong, SeongYun;Karoui, Tarek;Jeong, YeongHoon;Kim, DongSoo
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • Recently frequent occurrence of ground subsidence cases has become social issue, and people's concern on this problem has been growing accordingly. Meanwhile, understanding on the mechanism of ground subsidence formation is not enough. Therefore, this study aims for evaluating formation mechanism of ground subsidence under various groundwater conditions through model test when groundwater and soil are leaked together. Major factors found through model tests are direction of groundwater flow, head difference around the leakage point, and strehgth of the ground to support the underground cavity. Firstly, direction of groundwater flow has an influence on the direction of cavity expansion and ground collapse. Secondly, it is observed that the speed of ground subsidence formation increases as the head difference increases. Lastly, the expansion of the cavity can eventually lead to a sudden collapse.

Spherical cavity expansion in overconsolidated unsaturated soil under constant suction condition

  • Wang, Hui;Yang, Changyi;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • A semi-analytical solution to responses of overconsolidated (OC) unsaturated soils surrounding an expanding spherical cavity under constant suction condition is presented. To capture the elastoplastic hydro-mechanical property of OC unsaturated soils, the unified hardening (UH) model for OC unsaturated soil is adopted in corporation with a soil-water characteristic curve (SWCC) and two suction yield surfaces. Taking the specific volume, radial stress, tangential stress and degree of saturation as the four basic unknowns, the problem investigated is formulated by solving a set of first-order ordinary differential equations with the help of an auxiliary variable and an iterative algorithm. The present solution is validated by comparing with available solution based on the modified Cam Clay (MCC) model. Parametric studies reveal that the hydraulic and mechanical responses of spherical cavity expanding in unsaturated soils are not only coupled, but also affected by suction and overconsolidation ratio (OCR) significantly. More importantly, whether hydraulic yield will occur or not depends only on the initial relationship between suction yield stress and suction. The presented solution can be used for calibration of some insitu tests in OC unsaturated soil.

A Study on the Change of Cavity Area through Groundwater Injection Test under Pavement Cavity (도로하부 공동 내의 지하수 주입 실험을 통한 공동 영역 변화 연구)

  • Kim, Sang Mok;Choi, Hyeon;Yoon, Jin Sung;Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.267-275
    • /
    • 2020
  • Purpose: In this study, GPR exploration equipment, spray vehicles and flow meters, core drill, borehole image processing system(BIPS), 3D cavity imagery equipment, and cavity formatting equipment were used to identify this cavity growth process. Method: A certain amount of water was injected in proportion to the mass of the cavity, and the cavity was observed to expand as the injected water was drained out. The cavity rating change was evaluated by quantitatively evaluating the expansion factors and the speed of growth. Results: According to the results of examining the volume change through injection time - injection flow rate - volume increase for the four experimenters, the volume increase decreased as the injection time increased, and there was no further increase in volume if injected for one hour or so. Conclusion: In addition, the injection test analyzed the volumetric variation to determine whether the cause of the cavity occurrence was the effect of the underground burial in the vicinity of the cavity. Therefore, it was found that the cavity expansion is caused by the repetition of the relaxation soil collapse due to the groundwater flow and the loss of the collapsed soil below the cavity.

Short-term treatment effects produced by rapid maxillary expansion evaluated with computed tomography: A systematic review with meta-analysis

  • Giudice, Antonino Lo;Spinuzza, Paola;Rustico, Lorenzo;Messina, Gabriele;Nucera, Riccardo
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.314-323
    • /
    • 2020
  • Objective: To identify the available evidence on the effects of rapid maxillary expansion (RME) with three-dimensional imaging and provide meta-analytic data from studies assessing the outcomes using computed tomography. Methods: Eleven electronic databases were searched, and prospective case series were selected. Two authors screened all titles and abstracts and assessed full texts of the remaining articles. Seventeen case series were included in the quantitative synthesis. Seven outcomes were investigated: nasal cavity width, maxillary basal bone width, alveolar buccal crest width, alveolar palatal crest width, inter-molar crown width, inter-molar root apex width, and buccopalatal molar inclination. The outcomes were investigated at two-time points: post-expansion (2-6 weeks) and post-retention (4-8 months). Mean differences and 95% confidence intervals were used to summarize and combine the data. Results: All the investigated outcomes showed significant differences post-expansion (maxillary basal bone width, +2.46 mm; nasal cavity width, +1.95 mm; alveolar buccal crest width, +3.90 mm; alveolar palatal crest width, +3.09 mm; intermolar crown width, +5.69 mm; inter-molar root apex width, +2.85 mm; and dental tipping, +3.75°) and post-retention (maxillary basal bone width, +2.21 mm; nasal cavity width, +1.55 mm; alveolar buccal crest width, +3.57 mm; alveolar palatal crest width, +3.32 mm; inter-molar crown width, +5.43 mm; inter-molar root apex width, +4.75 mm; and dental tipping, 2.22°) compared to pre-expansion. Conclusions: After RME, skeletal expansion of the nasomaxillary complex was greater in most caudal structures. Maxillary basal bone showed 10% post-retention relapse. During retention period, uprighting of maxillary molars occurred.

Evaluation of Performance of Expansive Material for Restoration of Underground Cavity and Stress Release Zone (지하공동 및 이완영역 복구를 위한 팽창성 재료의 성능 평가)

  • Lee, Kicheol;Choi, Byeong-Hyun;Bak, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.141-155
    • /
    • 2018
  • Recently, the number of ground subsidence resulting from underground cavity has been increased. Accordingly, the importance of restoration of stress release zone around the underground cavity has been emphasized. The stress release zone is composed of low density soils having extremely low stiffness and degree of compaction, which can lead to additional cavity expansion and collapse of overlying ground. Therefore, in this study, the suitability of restoration method of underground cavity using expansive material for reinforcement of stress release zone around the cavity is verified. The basic physical properties and expansion characteristics of the expansive material were examined. The experiment equipment capable simulating of stress release zone was developed and is used to investigate the effect of expanding material on stress release zone. The stress release zone was simulated using the spring in numerical analysis. The factors of the volume ratio of the underground cavity to the expansion material, the degree of stress relaxation, and the shape of the cavity were varied in numerical simulations, and the behavior of stress release zone was analyzed based on the numerical analysis results. Analysis variables are factors that affect each other. Also, filling of underground cavity and capacity of restoration of stress release zone were confirmed when the expansive material was inserted into underground cavity.

Basic Study on Mechanism of Cave-in in Road through Laboratory Model Tests (실내모형시험을 통한 도로함몰 매커니즘에 대한 기초적 연구)

  • Kweon, Gichul;Kim, Sanglok;Hong, Seokwoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.11-19
    • /
    • 2016
  • PURPOSES : This study identifies the causes and the mechanism of the occurrence of underground cavities. METHODS : A case study on cave-in and a series of model tests with a small soil chamber were conducted. RESULTS : A hypothesis about the mechanism of the cave-in in road was established, and the basic influencing factors on underground cavity expansion were identified. CONCLUSIONS : It was found that the characteristics of shear strength of soil and direction of water flow had a larger influence on cavity formation and expansion than the characteristics of internal erosion. In addition, large cavities suddenly expanded when cavities were caused owing to breakage of buried sewer pipe.

A Study on the Expansion Cavity Pipe for Performance Improvement of Exhaust System in Automotive (자동차 배기성능개선을 위한 확장형 공동파이프에 관한 연구)

  • Son, Sung-Man;Park, Kyoung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • The temperature of exhaust gas was raised by increasing of engine movement on developing engine. Thermal of high temperature and pressure reverse in bellows, because of increasing of engine movement and the thermal performance of converter in combustion. As a result, thermal loss is increased and thermal efficiency is decreased rapidly in bellows, it can occur to damage in mechanical structure. In this study, it was necessary to analyze back pressure performance and thermal characteristic on driving condition in exhaust system. It was adapted braid type bellows and straight type exhaust pipe. It was compared with curve type exhaust pipe for lay-out on considering to design of exhaust system. It was necessary to improve thermal characteristic and back pressure performance so that expansion cavity pipe(ECP) was installed between bellows and catalyst convert. Not only decreasing back pressure was solved but also thermal characteristic problems in exhaust pipe because of increasing capacity. According to this study, the basis of data is presented when new exhaust system is designed.