Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.2.147

A novel approach for predicting lateral displacement caused by pile installation  

Li, Chao (School of Civil Engineering, Central South University)
Zou, Jin-feng (School of Civil Engineering, Central South University)
Li, Lin (Department of Geotechnical Engineering, Tongji University)
Publication Information
Geomechanics and Engineering / v.20, no.2, 2020 , pp. 147-154 More about this Journal
Abstract
A novel approach for predicting lateral displacement caused by pile installation in anisotropic clay is presented, on the basis of the cylindrical and spherical cavities expansion theory. The K0-based modified Cam-clay (K0-MCC) model is adopted for the K0-consolidated clay and the process of pile installation is taken as the cavity expansion problem in undrained condition. The radial displacement of plastic region is obtained by combining the cavity wall boundary and the elastic-plastic (EP) boundary conditions. The predicted equations of lateral displacement during single pile and multi-pile installation are proposed, and the hydraulic fracture problem in the vicinity of the pile tip is investigated. The comparison between the lateral displacement obtained from the presented approach and the measured data from Chai et al. (2005) is carried out and shows a good agreement. It is suggested that the presented approach is a useful tool for the design of soft subsoil improvement resulting from the pile installation.
Keywords
lateral displacement; pile installation; anisotropic clay; cavity expansion; modified Cam-clay model;
Citations & Related Records
Times Cited By KSCI : 23  (Citation Analysis)
연도 인용수 순위
1 Keawsawasvong, S. and Ukritchon, B. (2016), "Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay", Geomech. Eng., 11(2), 235-252. https://doi.org/10.12989/gae.2016.11.2.235.   DOI
2 Khanmohammadi, M. and Fakharian, K. (2018), "Evaluation of performance of piled-raft foundations on soft clay: A case study", Geomech. Eng., 14(1), 43-50. https://doi.org/10.12989/gae.2018.14.1.043.   DOI
3 Kim, Y.S. and Choi, J.I. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.   DOI
4 Ko, J., Cho, J. and Jeong, S. (2018), "Analysis of load sharing characteristics for a piled raft foundation", Geomech. Eng., 16(4), 449-461. https://doi.org/10.12989/gae.2018.16.4.449.   DOI
5 Kumara, J.J., Kurashina, T. and Kikuchi, Y. (2016), "Effects of pile geometry on bearing capacity of open-ended piles driven into sands", Geomech. Eng., 11(3), 385-400. https://doi.org/10.12989/gae.2016.11.3.385.   DOI
6 Kwon, J., Kim, C., Im, J.C. and Yoo, J.W. (2018), "Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay", Geomech. Eng., 14(2), 175-185. https://doi.org/10.12989/gae.2018.14.2.175.   DOI
7 Li, C. and Zou, J.F. (2019). "Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model." Geomech. Eng., 19(2), 141-151. https://doi.org/10.12989/gae.2019.19.2.141.   DOI
8 Li, C., Zou, J.F. and Zhou, H. (2019b), "Cavity expansions in k0 consolidated clay", Eur. J. Environ. Civ. Eng., https://doi.org/10.1080/19648189.2019.1605937.
9 Li, C., Zou, J.F., and A, S.G. (2019a), "Closed-form solution for undrained cavity expansion in anisotropic soil mass based on the spatially mobilized plane failure criterion", Int. J. Geomech., 19(7), 04019075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001458.   DOI
10 Li, L., Li, J. and Sun, D. (2016). "Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay". Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.   DOI
11 Li, L., Li, J. Sun, D. and Yue, Z. (2016), "Pile jacking-in effects considering stress anisotropy of natural clay", Chin. J. Rock Mech. Eng., 35(5), 1055-1064 (in Chinese).
12 Randolph, M.F. (2003), "Science and empiricism in pile foundation design", Geotechnique, 53(10), 847-876. https://doi.org/10.1680/geot.2003.53.10.847.   DOI
13 Silvestri, V. and Abou-Samra, G. (2012), "Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified Cam clay", Geomech. Eng., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019.   DOI
14 Randolph, M.F., Carter, J.P. and Wroth, C.P. (1979), "Driven piles in clay-the effects of installation and subsequent consolidation", Geotechnique, 29(4), 361-393. https://doi.org/10.1680/geot.1979.29.4.361.   DOI
15 Sagaseta, C. and Whittle, A.J. (2001), "Prediction of ground movements due to pile driving in clay", J. Geotech. Geoenviron. Eng., 127(1), 55-66. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(55).   DOI
16 Sagaseta, C., Whittle, A.J. and Santagata, M. (1997), "Deformation analysis of shallow penetration in clay", Int. J. Numer. Anal. Meth. Geomech., 21(10), 687-719. https://doi.org/10.1002/(SICI)1096-9853(199710)21:10<687::AID-NAG897>3.0.CO;2-3.   DOI
17 Sun, D.A., Matsuoka, H., and Yao, Y.P. (2004), "An anisotropic hardening elastoplastic model for clays and sands and its application to FE analysis", Comput. Geotech., 31(1), 37-46. https://doi.org/10.1016/j.compgeo.2003.11.003.   DOI
18 Ukritchon, B., Faustino, J.C. and Keawsawasvong, S. (2016), "Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment", Geomech. Eng., 10(5), 577-598. https://doi.org/10.12989/gae.2016.10.5.577.   DOI
19 Vesic, A.S. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Found. Div., 98(3), 265-290. https://trid.trb.org/view/125818.   DOI
20 Wang, S., and Yin, S. (2011), "A closed-form solution for a spherical cavity in the elastic-brittle-plastic medium", Tunn. Undergr. Sp. Technol., 26(1), 236-241. https://doi.org/10.1016/j.tust.2010.06.005.   DOI
21 Xiao, Y., Sun, Y., Yin, F., Liu, H. and Xiang, J. (2016), "Constitutive modeling for transparent granular soils", Int. J. Geomech., 04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857.   DOI
22 Zhou, H., Liu, H., Randolph, M.F., Kong, G. and Cao, Z. (2017), "Experimental and analytical study of X-section cast-in-place concrete pile installation influence", Int. J. Phys. Model. Geotech., 17(2), 1-19. https://doi.org/10.1680/jphmg.15.00037.
23 Yu, H.S. (2000), Cavity Expansion Methods in Geomechanics, Kluwer Academic Publishers.
24 Yu, H.S. and Houlsby, G.T. (1991), "Finite cavity expansion in dilatant soils: loading analysis", Geotechnique, 42(4), 649-654. https://doi.org/10.1680/geot.1991.41.2.173.
25 Zhou, H., Liu, H., Kong, G. and Huang, X. (2014), "Analytical solution of undrained cylindrical cavity expansion in saturated soil under anisotropic initial stress", Comput. Geotech., 55(2), 232-239. https://doi.org/10.1016/j.compgeo.2013.09.011.   DOI
26 Zou, J. F., Wei, A. and Yang, T. (2018), "Elasto-plastic solution for shallow tunnel in semi-infinite space", Appl. Math. Model., 64(12), 669-687. https://doi.org/10.1016/j.apm.2018.07.049.   DOI
27 Zou, J.F., Chen, K.F. and Pan, Q.J. (2017), "Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening", Geomech. Eng., 13(6), 907-928. https://doi.org/10.12989/gae.2017.13.6.907.   DOI
28 Zou, J.F. and Wei, X.X. (2018), "An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling", Geomech. Eng., 16(1), 59-69. https://doi.org/10.12989/gae.2018.16.1.059.   DOI
29 Zou, J.F. and Zhang, P.H. (2019), "Analytical model of fully grouted bolts in pull-out tests and in situ rock masses", Int. J. Rock. Mech. Min. Sci., 113(1), 278-294. https://doi.org/10.1016/j.ijrmms.2018.11.015.   DOI
30 Zou, J.F., Chen, G. and Qian, Z. (2019), "Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models", Comput. Geotech., 106, 1-17. https://doi.org/10.1016/j.compgeo.2018.10.014.   DOI
31 Chen, G.H., Zou, J.F., and Qian, Z.H. (2019b), "An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils", Geomech. Eng., 17(1), 97-107. https://doi.org/10.12989/gae.2019.17.1.097.   DOI
32 Ahn, H.Y., Oh, D.W. and Lee, Y.J. (2018), "Behaviour of vertically and horizontally loaded pile and adjacent ground affected by tunneling", Geomech. Eng., 15(3), 861-868. https://doi.org/10.12989/gae.2018.15.3.861.   DOI
33 Carter, J.P. and Yeung, S.K. (1985), "Analysis of cylindrical cavity expansion in a strain weakening material", Comput. Geotech., 1(3), 161-180. https://doi.org/10.1016/0266-352X(85)90021-7.   DOI
34 Carter, J.P., Booker, J.R. and Yeung, S.K. (1986), "Cavity expansion in cohesive frictional soils", Geotechnique, 36(3), 345-358. https://doi.org/10.1680/geot.1986.36.3.349.
35 Carter, J.P., Randolph, M.F. and Wroth, C.P. (1979), "Stress and pore pressure changes in clay during and after the expansion of a cylindrical cavity", Int. J. Numer. Anal. Meth. Geomech., 3(4), 305-322. https://doi.org/10.1002/nag.1610030402.   DOI
36 Chai, J. C., Miura, N. and Koga, H. (2005), "Lateral displacement of ground caused by soil-cement column installation", J. Geotech. Geoenviron. Eng., 131(5), 623-632. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(623).   DOI
37 Chai, J.C. and Carter, J.P. (2011), Deformation Analysis in Soft Ground Improvement, Springer Netherlands.
38 Chen, G.H., Zou, J.F. and Chen, J.Q. (2019a), "Shallow tunnel face stability considering pore water pressure in non-homogeneous and anisotropic soils", Comput. Geotech., 116, 103205. https://doi.org/10.1016/j.compgeo.2019.103205.   DOI
39 Chen, S.L. and Abousleiman, Y.N. (2012), "Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified cam clay soil mass", Geotechnique, 62(5), 447-456. http://dx.doi.org/10.1680/geot.11.P.027.   DOI
40 Fattah, M. Y., Salim, N. M. and Al-Gharrawi, A. (2018), "Incremental filling ratio of pipe pile groups in sandy soil", Geomech. Eng., 15(1), 695-710. https://doi.org/10.12989/gae.2018.15.1.695.   DOI
41 Hill, R. (1950), The Mathematical Theory of Plasticity, Clarendon Press.