• Title/Summary/Keyword: caspase-8

Search Result 565, Processing Time 0.022 seconds

Structure of CT26 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Kang, Dong-Il;Baek, Dong-Ha;Shin, Song-Yub;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1225-1228
    • /
    • 2005
  • C-terminal fragments of APP (APP-CTs), that contain A$\beta$ sequence, are found in neurotic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT26, Thr639-Asp664 (TVIVITLVMLKKKQYTSIHH GVVEVD) includes not only the transmembrane domain but also the cytoplasmic domain of APP. This sequence is produced from cleavage of APP by caspase and $\gamma$-secretase. In this study, the solution structure of CT26 was investigated using NMR spectroscopy and circular dichroism (CD) spectropolarimeter in various membrane-mimicking environments. According to CD spectra and the tertiary structure of CT26 determined in TFE-containing aqueous solution, CT26 has an α-helical structure from $Val^{2}\;to\;Lys^{11}$ in TFE-containing aqueous solution. However, according to CD data, CT26 adopts a $\beta$-sheet structure in the SDS micelles and DPC micelles. This result implies that CT26 may have a conformational transition between $\alpha$-helix and $\beta$-sheet structure. This study may provide an insight into the conformational basis of the pathological activity of the C-terminal fragments of APP in the model membrane.

Anti-inflammatory Effects of Aroma Oil Complex on DNCB-Induced Allergic Contact Dermatitis in Dogs (개에서 DNCB에 의해 유발된 알레르기성 접촉피부염에 대한 아로마 오일 합제의 항염증 효과)

  • Oh, Dong-Kyu;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.31 no.3
    • /
    • pp.180-193
    • /
    • 2014
  • Allergic contact dermatitis (ACD) is an inflammatory skin disease and regarded as a prototype of T-cell mediated delayed-type hypersensitivity reactions. Aroma Oil Complex (AOC) is composed of lavender true oil, chamomile roman oil and tea tree oil. This study was performed to assess the effects of AOC in a canine model of ACD. ACD was induced on the back of dogs induced by sensitization and repeated application by 2,4-dinitro-1-chlorobenzene (DNCB). Topical treatment of AOC was applied once a day for 8 days and skin biophysical parameters including transepidermal water loss (TEWL), skin hydration, skin thickness and erythema index, were measured every two days during experimental periods. Histopathology and immunohistochemistry were performed to evaluate the anti-inflammatory effect. In skin biophysical parameters, TEWL, skin hydration, skin thickness and erythema index were significantly increased, with a maximum increase appeared on day 2 (p<0.05). After the completion of AOC treatment, skin biophysical parameters were significantly reached those of baseline in a time-dependent manner (p<0.05). In histopathology, marked increases of epidermal thicknesses were induced after DNCB challenge with numerous inflammatory cell infiltrations and edematous changes, decreases of connective tissue occupied regions in dermis. In addition, marked increases of cytokine - tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interferon-${\gamma}$ (IFN-${\gamma}$)-immunoreactivities in the dermis and of apoptotic markers - caspase-3 and PARP-immunoreactivities in the epidermis were observed in DNCB control as compared with intact control, respectively (p<0.01). The decrease of infiltrated inflammatory cells and related decreases of pro-inflammatory cytokine immunoreactivities were observed in AOC treated skin (p<0.01). Based on these findings, AOC may have anti-inflammatory and alleviatory effects in the allergic contact dermatitis.

Apoptotic Effect of Rubia cordifolia Dichloromethane Extracts on Human Acute Jurkat T Cells (천초근 dichloromethane 추출물의 Jurkat T 세포에서 세포사멸 효과)

  • Kim, Ji-Hye;Lee, Jong-Hwan;Kim, Young-Ho;Kim, Kwang-Hyeon
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.163-168
    • /
    • 2009
  • To understand cytotoxic activity of Rubia cordifolia L. (Rubiaceae), which has been used as a traditional oriental medicine, the mechanism underlying cytotoxic effect of its extract on human acute Jurkat T cells was investigated. The methanol extract of roots (3 kg) of R. codifolia was evaporated, dissolved in water, and then extracted by dichloromethane. The substances in the chloroform extract showing the most cytotoxic activity were further purified by a series of preparative HPLC. The extracted active substance (65 mg) was designated as CCH1. When Jurkat T cells were treated with CCH1 at concentration ranging from 0.5 to 2.0 ${\mu}g$/ml, apoptotic phenomena of cells companying several subsequent biochemical reactions such as mitochondria cytochrome c release, activation of casapase-8, -9, and caspase- 3, degradation of PARP and DNA fragmentation occurred via mitochondria-dependent pathway. However, abrogation of apoptosis was observed in an ectopic expression of Bcl-xL, which is a suppressor for mitochondrial cytochrome c release. These results demonstrate that the cytotoxicity of CCH1 against Jurkat T cells is attributable to apoptosis mediated by mitochodria-dependent death-signaling regulated by Bcl-xL. In addition, the CCH1 is more potent to leukemia Jurkat T cell than to human peripheral blood monocyte cells (PBMC).

Machilus Thunbergii Water Extract Induces Cytotoxic Effect against Human Acute Jurkat T Lymphoma (후박 열수 추출물의 Jurkat T 세포에서 세포사멸 효과)

  • Kim, Min Hwan;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.951-957
    • /
    • 2017
  • To understand the cytotoxic activity of Machilus thunbergii, which has been used as a traditional oriental medicine, the mechanism underlying the cytotoxic effect of its extract on human acute Jurkat T cells was investigated. The methanol extract of roots (3 kg) of M. thunbergii was evaporated, dissolved in, and then extracted by water. The water-extracted active substance was designated MTWE. When Jurkat T cells were treated with MTWE at concentrations of 0, 25, 50, and $100{\mu}g/ml$, the apoptotic phenomenon of cells accompanying several subsequent biochemical reactions, such as mitochondrial cytochrome c release, activation of caspase-3, and ICAD degradation, was detected in the Jurkat T cells. Moverover. the expression of Bcl-xL, which is a suppressor for mitochondrial cytochrome c release pathway, was reduced in the Jurkat T cells. As DUSP6, a growth suppressor of cancer cells, ranged from 0, 25, 50, $100{\mu}g/ml$ of MTWE, the expression level was elevated in the Jurkat T cells. The apoptotic morphological change of the nuclei was observed by DAPI staining. Although the potential involvement of the other factors and DUSP6 is currently being investigated in more detail, these findings support the notion that MTWE is able to achieve the apoptosis of Jurkat T cells, and it seems that MTWE is useful as a method of evaluating a chemotherapeutic agent or tonic materials for human acute leukemia.

Novel SIRT Inhibitor, MHY2256, Induces Cell Cycle Arrest, Apoptosis, and Autophagic Cell Death in HCT116 Human Colorectal Cancer Cells

  • Kim, Min Jeong;Kang, Young Jung;Sung, Bokyung;Jang, Jung Yoon;Ahn, Yu Ra;Oh, Hye Jin;Choi, Heejeong;Choi, Inkyu;Im, Eunok;Moon, Hyung Ryong;Chung, Hae Young;Kim, Nam Deuk
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • We examined the anticancer effects of a novel sirtuin inhibitor, MHY2256, on HCT116 human colorectal cancer cells to investigate its underlying molecular mechanisms. MHY2256 significantly suppressed the activity of sirtuin 1 and expression levels of sirtuin 1/2 and stimulated acetylation of forkhead box O1, which is a target protein of sirtuin 1. Treatment with MHY2256 inhibited the growth of the HCT116 (TP53 wild-type), HT-29 (TP53 mutant), and DLD-1 (TP53 mutant) human colorectal cancer cell lines. In addition, MHY2256 induced G0/G1 phase arrest of the cell cycle progression, which was accompanied by the reduction of cyclin D1 and cyclin E and the decrease of cyclin-dependent kinase 2, cyclin-dependent kinase 4, cyclin-dependent kinase 6, phosphorylated retinoblastoma protein, and E2F transcription factor 1. Apoptosis induction was shown by DNA fragmentation and increase in late apoptosis, which were detected using flow cytometric analysis. MHY2256 downregulated expression levels of procaspase-8, -9, and -3 and led to subsequent poly(ADP-ribose) polymerase cleavage. MHY2256-induced apoptosis was involved in the activation of caspase-8, -9, and -3 and was prevented by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, the autophagic effects of MHY2256 were observed as cytoplasmic vacuolation, green fluorescent protein-light-chain 3 punctate dots, accumulation of acidic vesicular organelles, and upregulated expression level of light-chain 3-II. Taken together, these results suggest that MHY2256 could be a potential novel sirtuin inhibitor for the chemoprevention or treatment of colorectal cancer or both.

Effect of dietary changes from high-fat diet to normal diet on breast cancer growth and metastasis (고지방식이에서 일반식이로의 전환이 유방암의 성장 및 전이에 미치는 영향)

  • Park, Seung hwa;Jung, InKyung;Kim, Jung-Hyun
    • Journal of Nutrition and Health
    • /
    • v.53 no.4
    • /
    • pp.369-380
    • /
    • 2020
  • Purpose: It has been previously reported that breast tumor incidence, growth, and metastasis are stimulated by high-fat diet but reduced by caloric restriction. However, few studies have elucidated the effects of dietary change from a high-fat diet after breast cancer initiation. Therefore, in this study, we attempted to provide practical assistance to breast cancer prevention and management by investigating the effects of dietary change from a high-fat diet to normal diet on breast cancer growth and metastasis. Methods: The experimental animals were divided into 2 groups (high-fat diet control [HFC] group and diet restriction [DR] group) and consumed a high-fat diet for 8 weeks. 4T1 cells were transplanted into subcutaneous fat or tail vein to measure the growth and metastasis of breast cancer. The HFC and DR groups continuously ingested either high-fat diet or AIG-93G diet for 5 weeks or 3 weeks, respectively. Cell proliferation and apoptosis markers from tumor tissues were analyzed by Western blot analysis. The data were analyzed using the SPSS 25.0 package program. Results: The results show that the DR group significantly reduced breast tumor initiation, growth, and tumor tissue weight compared to the HFC group. The DR group suppressed tumor growth by decreasing proliferation and inducing apoptosis through down-regulation of Bcl-xL and up-regulation of caspase-3 activity. Furthermore, the DR group significantly reduced numbers of metastasized tumors in lung tissues. Conclusion: These results suggest that dietary change from a high-fat diet to normal diet decreased breast growth by reducing cell proliferation and inducing apoptosis and metastasis. Taken together, these results indicate that dietary change to a low-fat and balanced diet might suppress breast tumor growth and metastasis even after tumor diagnosis.

Alkaloids from Beach Spider Lily (Hymenocallis littoralis) Induce Apoptosis of HepG-2 Cells by the Fas-signaling Pathway

  • Ji, Yu-Bin;Chen, Ning;Zhu, Hong-Wei;Ling, Na;Li, Wen-Lan;Song, Dong-Xue;Gao, Shi-Yong;Zhang, Wang-Cheng;Ma, Nan-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9319-9325
    • /
    • 2014
  • Alkaloids are the most extensively featured compounds of natural anti-tumor herbs, which have attracted much attention in pharmaceutical research. In our previous studies, a mixture of major three alkaloid components (5, 6-dihydrobicolorine, 7-deoxy-trans-dihydronarciclasine, littoraline) from Hymenocallis littoralis were extracted, analyzed and designated as AHL. In this paper, AHL extracts were added to human liver hepatocellular cells HepG-2, human gastric cancer cell SGC-7901, human breast adenocarcinoma cell MCF-7 and human umbilical vein endothelial cell EVC-304, to screen one or more AHL-sensitive tumor cell. Among these cells, HepG-2 was the most sensitive to AHL treatment, a very low dose ($0.8{\mu}g/ml$) significantly inhibiting proliferation. The non-tumor cell EVC-304, however, was not apparently affected. Effect of AHL on HepG-2 cells was then explored. We found that the AHL could cause HepG-2 cycle arrest at G2/M checkpoint, induce apoptosis, and interrupt polymerization of microtubules. In addition, expression of two cell cycle-regulated proteins, CyclinB1 and CDK1, was up-regulated upon AHL treatment. Up-regulation of the Fas, Fas ligand, Caspase-8 and Caspase-3 was observed as well, which might imply roles for the Fas/FsaL signaling pathway in the AHL-induced apoptosis of HepG-2 cells.

Mechanism of Growth Inhibition by BCH in HEp2 Human Head and Neck Squamous Cell Carcinoma (사람 두경부 편평세포암종 HEp2 세포에서 BCH에 의한 세포성장 억제기전)

  • Choi, Bong-Kyu;Jung, Kyu-Yong;Cho, Seon-Ho;Kim, Chun-Sung;Kim, Do-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.5
    • /
    • pp.555-560
    • /
    • 2008
  • Amino acid transporters are essential for the growth and proliferation in all living cells. Among the amino acid transporters, the system L amino acid transporters are the major nutrient transport system responsible for the $Na^+$-independent transport of neutral amino acids including several essential amino acids. The L-type amino acid transporter 1 (LAT1), an isoform of system L amino acid transporter, is highly expressed in cancer cells to support their continuous growth and proliferation. 2-Aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) is a model compound for the study of amino acid transporter as a system L selective inhibitor. We have examined the effect and mechanism of BCH on cell growth suppression in HEp2 human head and neck squamous cell carcinoma. The BCH inhibited the L-leucine transport in a concentration-dependent manner with a $IC_{50}$ value of $51.2{\pm}3.8{\mu}M$ in HEp2 cells. The growth of HEp2 cells was inhibited by BCH in the timeand concentration-dependent manners. The formation of DNA ladder was not observed with BCH treatment in the cells. Furthermore, the proteolytic processing of caspase-3 and caspase-7 in the cells were not detected by BCH treatment. These results suggest that the BCH inhibits the growth of HEp2 human head and neck squamous cell carcinoma through the intracellular depletion of neutral amino acids for cell growth without apoptotic processing.

Antioxidative and Anticancer Activities of Ethanol Extract of Millettia erythrocalyx (Millettia erythrocalyx 에탄올 추출물의 항산화 활성 및 항암 활성에 관한 연구)

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Choi, Sun Mi;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2018
  • Millettia erythrocalyx, a species of plant in the Fabaceae family, is widely distributed in the tropical and subtropical regions of the world, such as the Indies, China, and Thailand. The antiviral activity of flavonoids from M. erythrocalyx has been reported; however, the antioxidative and anticancer activities of M. erythrocalyx remain unclear. In this study, we evaluated the antioxidative and anticancer effects of ethanol extract of M. erythrocalyx (EEME) and the molecular mechanism of its anticancer activity in human hepatocellular carcinoma HepG2 cells. EEME exhibited significant antioxidative effects, with a concentration at 50% inhibition ($IC_{50}$) value of $2.74{\mu}g/ml$, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay; moreover, it inhibited cell proliferation in a dose-dependent manner in HepG2 cells. Cell cycle analyses showed that EEME induced HepG2 cell accumulation in the subG1 phase in a dose-dependent manner. EEME also induced apoptosis of HepG2 cells, with increases in apoptotic cells and apoptotic bodies, as detected by Annexin V and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. Treatment with EEME resulted in increased expression of First apoptosis signal (Fas), a death receptor, and Bcl-2-associated X protein (Bax), a proapoptotic protein, and the activation of caspase-3, 8, and 9, resulting in the cleavage of poly (Adenosine diphosphate-ribose) polymerase (PARP). Collectively, these results suggest that EEME may exert an anticancer effect in HepG2 cells by inducing apoptosis via both the intrinsic and extrinsic pathways.

Effects of Extraction Methods of Medicinal Plants on Human Growth of Neuroblastoma SK-N-SH Cells (추출방법에 따른 한약재의 인체신경모세포 SK-N-SH 보호 효과)

  • Kwon, Jung-Min;Moon, Yeon-Gyu;Kim, Young-Suk;Jung, Ji-Young;Ha, Yeong-Lae;Yang, Jae-Kyung
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1190-1198
    • /
    • 2011
  • Extraction methods of medicinal plants were evaluated for growth enhancing effects of human neuroblastoma SK-N-SH cells. Hot-water extraction (reflux for 5 hr), hot-water extraction post treatment (100$^{\circ}C$ or 120$^{\circ}C$, 90 min) and ethanol extraction (reflux for 5 hr) methods were applied to Angelica gigas, Rhemania glutinosa, Paeonia lactiflora and Cnidium officinale samples to extract their constituents. Cells were treated for 2 hr with various concentrations of extracts (0, 0.5, 1, 2, 4 ${\mu}g/{\mu}l}$ media) prior to $H_2O_2$ (250 ${\mu}M$) treatment for 2 hr to provide oxidative stress. Cell viability, caspase-3 expression and apoptosis were measured for cells treated with sample extracts. Hot-water extract exhibited a stronger growth enhancing and apoptosis protecting ability than other extracts. These activities were shown at less than 1 ${\mu}g/{\mu}l}$ concentration, and not greater than 2 ${\mu}g/{\mu}l}$ concentration. Hot-water extract contained more polyphenolic compounds than other extracts coming along with stronger antioxidant activity. The efficacy of antioxidant activity was stronger in the hot-water extract of Angelica gigas than other hot-water extracts of medicinal plants. These results suggest that hot-water extraction is an appropriate method to extract materials for growth enhancing and apoptosis protection of SK-N-SH cells, and hot-water extracts of Angelica gigas might be useful materials for protection from aging brain cells.