Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.1.50

Antioxidative and Anticancer Activities of Ethanol Extract of Millettia erythrocalyx  

Jin, Soojung (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Oh, You Na (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Son, Yu Ri (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Choi, Sun Mi (Department of Life Science and Biotechnology, Dong-Eui University Grraduate School)
Kwon, Hyun Ju (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Publication Information
Journal of Life Science / v.28, no.1, 2018 , pp. 50-57 More about this Journal
Abstract
Millettia erythrocalyx, a species of plant in the Fabaceae family, is widely distributed in the tropical and subtropical regions of the world, such as the Indies, China, and Thailand. The antiviral activity of flavonoids from M. erythrocalyx has been reported; however, the antioxidative and anticancer activities of M. erythrocalyx remain unclear. In this study, we evaluated the antioxidative and anticancer effects of ethanol extract of M. erythrocalyx (EEME) and the molecular mechanism of its anticancer activity in human hepatocellular carcinoma HepG2 cells. EEME exhibited significant antioxidative effects, with a concentration at 50% inhibition ($IC_{50}$) value of $2.74{\mu}g/ml$, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay; moreover, it inhibited cell proliferation in a dose-dependent manner in HepG2 cells. Cell cycle analyses showed that EEME induced HepG2 cell accumulation in the subG1 phase in a dose-dependent manner. EEME also induced apoptosis of HepG2 cells, with increases in apoptotic cells and apoptotic bodies, as detected by Annexin V and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. Treatment with EEME resulted in increased expression of First apoptosis signal (Fas), a death receptor, and Bcl-2-associated X protein (Bax), a proapoptotic protein, and the activation of caspase-3, 8, and 9, resulting in the cleavage of poly (Adenosine diphosphate-ribose) polymerase (PARP). Collectively, these results suggest that EEME may exert an anticancer effect in HepG2 cells by inducing apoptosis via both the intrinsic and extrinsic pathways.
Keywords
Anticancer; antioxidative; apoptosis; HepG2 cells; Millettia erythrocalyx;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adam, J. M. and Cory, S. 2007. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324-1337.   DOI
2 Carson, D. A. and Ribeiro, J. M. 1993. Apoptosis and disease. Lancet 341, 1251-1254.   DOI
3 Choi, I. P. 2013. Reactive oxygen species and cancer. Hanyang Med. Rev. 33, 118-122.   DOI
4 Devasagayam, T. P., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S. and Lele, R. D. 2004. Free rardicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 52, 794-804.
5 Dickinson, B. C. and Chang, C. J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504-511.   DOI
6 Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516.   DOI
7 Fluda, S. 2015. Targeting apoptosis for anticancer therapy. Semin. Cancer Biol. 31, 84-88.   DOI
8 Fluda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811.   DOI
9 Galluzzi, L., Lopez-Soto, A., Kumar, S. and Kroemer, G. 2016. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221-231.   DOI
10 Bhanot, A., Sharma, R. and Noolvi, M. N. 2011. Natural sources as potential anti-cancer agents: A review. Int. J. Phytomedicine 3, 9-26.
11 Halliwell, B. H. and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1-85.
12 Han, S. I., Kim, Y. S. and Kim, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10.   DOI
13 Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407, 770-776.   DOI
14 Likhitwitayawuid, K., Sritularak, B., Benchanak, K., Lipipun, V., Mathew, J. and Schinazi, R. F. 2005. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat. Prod. Res. 19, 177-182.   DOI
15 Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Kosary, C. L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J. and Cronin, K. A. (eds). SEER Cancer Statistics Review, 1975-2014, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/ csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017.
16 Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. and Poirier, G. G. 1993. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976-3985.
17 Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. J., Pals, S. T. and van Oers, M. H. 1994. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415-1420.
18 Landis-Piwowar, K. R. and Iyer, N. R. 2014. Cancer chemoprevention: current state of the art. Cancer Growth Metastasis 7, 19-25.
19 Li, P., Nijhawan, D. and Wang, X. 2004. Mitochondrial activation of apoptosis. Cell 116, S57-59.   DOI
20 Lowe, S. W. and Lin, A. W. 2000. Apoptosis in cancer. Carcinogenesis 21, 485-495.   DOI
21 Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., Rader, J. A., van Schie, R. C., LaFace, D. M. and Green, D. R. 1995. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of bcl-2 and abl. J. Exp. Med. 182, 1545-1556.   DOI
22 Riedl, S. J. and Shi, Y. 2004. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897-907.
23 Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. 2010. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241.   DOI
24 Porter, A. G. and Janicke, R. U. 1999. Emerging roles of caspase- 3 in apoptosis. Cell Death Differ. 6, 99-104.   DOI
25 Riccardi, C. and Nicoletti, I. 2006. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458-1461.   DOI
26 Singh, S., Singh, P. P., Roberts, L. R. and Sanchez, W. 2014. Chemopreventive strategies in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 11, 45-54.   DOI
27 Sritularak, B. and Likhitwitayawuid, K. 2006. Flavonoids from the pods of Millettia erythrocalyx. Phytochemistry 67, 812-817.   DOI
28 Stewart, B. W. and Wild, C. P. 2014. World cancer report 2014. International Agency for Research on Cancer (IARC), Geneva, World Health Organization.
29 Strasser, A. and Newton, K. 1999. FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int. J. Biochem. Cell Biol. 31, 533-537.   DOI
30 Taylor, R. C., Cullen, S. P. and Martin, S. J. 2008. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231-241.   DOI
31 Tsujimoto, Y. and Shimizu, S. 2000. Bcl-2 family: life-ordeath switch. FEBS Lett. 466, 6-10.   DOI
32 Zou, H., Li, Y., Liu, X. and Wang, X. 1999. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549-11556.   DOI
33 Yin, S. Y., Wei, W. C., Jian, F. Y. and Yang, N. S. 2013. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement Alternat. Med. 2013, 302426.
34 Yuan, R., Hou, Y., Sun, W., Yu, J., Liu, X., Niu, Y., Lu, J. J. and Chen, X. 2017. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann. N. Y. Acad. Sci. 1401, 19-27.   DOI