DOI QR코드

DOI QR Code

Antioxidative and Anticancer Activities of Ethanol Extract of Millettia erythrocalyx

Millettia erythrocalyx 에탄올 추출물의 항산화 활성 및 항암 활성에 관한 연구

  • Jin, Soojung (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Oh, You Na (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Son, Yu Ri (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Choi, Sun Mi (Department of Life Science and Biotechnology, Dong-Eui University Grraduate School) ;
  • Kwon, Hyun Ju (Blue-Bio Industry Regional Innovation Center, Dong-Eui University) ;
  • Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
  • 진수정 (동의대학교 블루바이오소재개발센터) ;
  • 오유나 (동의대학교 블루바이오소재개발센터) ;
  • 손유리 (동의대학교 블루바이오소재개발센터) ;
  • 최선미 (동의대학교 대학원 생명응용학과) ;
  • 권현주 (동의대학교 블루바이오소재개발센터) ;
  • 김병우 (동의대학교 블루바이오소재개발센터)
  • Received : 2017.11.08
  • Accepted : 2017.12.20
  • Published : 2018.01.30

Abstract

Millettia erythrocalyx, a species of plant in the Fabaceae family, is widely distributed in the tropical and subtropical regions of the world, such as the Indies, China, and Thailand. The antiviral activity of flavonoids from M. erythrocalyx has been reported; however, the antioxidative and anticancer activities of M. erythrocalyx remain unclear. In this study, we evaluated the antioxidative and anticancer effects of ethanol extract of M. erythrocalyx (EEME) and the molecular mechanism of its anticancer activity in human hepatocellular carcinoma HepG2 cells. EEME exhibited significant antioxidative effects, with a concentration at 50% inhibition ($IC_{50}$) value of $2.74{\mu}g/ml$, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay; moreover, it inhibited cell proliferation in a dose-dependent manner in HepG2 cells. Cell cycle analyses showed that EEME induced HepG2 cell accumulation in the subG1 phase in a dose-dependent manner. EEME also induced apoptosis of HepG2 cells, with increases in apoptotic cells and apoptotic bodies, as detected by Annexin V and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. Treatment with EEME resulted in increased expression of First apoptosis signal (Fas), a death receptor, and Bcl-2-associated X protein (Bax), a proapoptotic protein, and the activation of caspase-3, 8, and 9, resulting in the cleavage of poly (Adenosine diphosphate-ribose) polymerase (PARP). Collectively, these results suggest that EEME may exert an anticancer effect in HepG2 cells by inducing apoptosis via both the intrinsic and extrinsic pathways.

Millettia erythrocalyx는 콩과(Fabaceae)에 속하는 식물로 중국, 태국, 인도 등 열대 아열대 지역에 분포하며, 항바이러스 활성을 보유하고 있다는 보고가 있으나 항산화능과 항암활성 등에 관한 연구는 보고된 바가 없다. 따라서 본 연구에서는 M. erythrocalyx의 에탄올 추출물(EEME)을 사용하여 항산화능을 측정하고, 인체간암세포주인 HepG2에 대한 항암활성과 그 분자적 기전에 관하여 분석하였다. 먼저 DPPH radical scavenging activity를 통해 분석한 결과, EEME의 $IC_{50}$$2.74{\mu}g/ml$로 뛰어난 항산화능을 보유하였음을 확인하였다. 또한 EEME 농도 의존적으로 HepG2 세포의 성장을 억제하였다. EEME의 HepG2 세포 사멸 효과의 기전을 분석하기 위하여 세포주기를 분석한 결과, EEME 농도의존적으로 SubG1 세포가 증가하였으며, Annexin V 염색과 DAPI 염색을 통해 apoptotic 세포 및 apoptotic body가 증가됨을 확인하였다. 또한 apoptosis 관련 단백질들의 발현변화를 분석한 결과, EEME 처리에 의해 사멸수용체인 Fas와 pro-apoptotic 단백질인 Bax의 발현이 증가되었으며, caspase-3, -8, -9가 활성화되고 최종적으로 PARP가 분해되어 apoptosis가 유도되었음을 확인하였다. 이러한 결과들로부터 EEME는 내인성 및 외인성 경로를 통한 apoptosis 유도에 의하여 HepG2 세포의 증식을 억제하는 항암활성을 보유하였음을 확인하였다.

Keywords

References

  1. Adam, J. M. and Cory, S. 2007. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324-1337. https://doi.org/10.1038/sj.onc.1210220
  2. Bhanot, A., Sharma, R. and Noolvi, M. N. 2011. Natural sources as potential anti-cancer agents: A review. Int. J. Phytomedicine 3, 9-26.
  3. Carson, D. A. and Ribeiro, J. M. 1993. Apoptosis and disease. Lancet 341, 1251-1254. https://doi.org/10.1016/0140-6736(93)91154-E
  4. Choi, I. P. 2013. Reactive oxygen species and cancer. Hanyang Med. Rev. 33, 118-122. https://doi.org/10.7599/hmr.2013.33.2.118
  5. Devasagayam, T. P., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S. and Lele, R. D. 2004. Free rardicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 52, 794-804.
  6. Dickinson, B. C. and Chang, C. J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504-511. https://doi.org/10.1038/nchembio.607
  7. Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. https://doi.org/10.1080/01926230701320337
  8. Fluda, S. 2015. Targeting apoptosis for anticancer therapy. Semin. Cancer Biol. 31, 84-88. https://doi.org/10.1016/j.semcancer.2014.05.002
  9. Fluda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811. https://doi.org/10.1038/sj.onc.1209608
  10. Galluzzi, L., Lopez-Soto, A., Kumar, S. and Kroemer, G. 2016. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221-231. https://doi.org/10.1016/j.immuni.2016.01.020
  11. Halliwell, B. H. and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1-85.
  12. Han, S. I., Kim, Y. S. and Kim, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. https://doi.org/10.5483/BMBRep.2008.41.1.001
  13. Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407, 770-776. https://doi.org/10.1038/35037710
  14. Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Kosary, C. L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J. and Cronin, K. A. (eds). SEER Cancer Statistics Review, 1975-2014, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/ csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017.
  15. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. and Poirier, G. G. 1993. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976-3985.
  16. Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. J., Pals, S. T. and van Oers, M. H. 1994. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415-1420.
  17. Landis-Piwowar, K. R. and Iyer, N. R. 2014. Cancer chemoprevention: current state of the art. Cancer Growth Metastasis 7, 19-25.
  18. Li, P., Nijhawan, D. and Wang, X. 2004. Mitochondrial activation of apoptosis. Cell 116, S57-59. https://doi.org/10.1016/S0092-8674(04)00031-5
  19. Likhitwitayawuid, K., Sritularak, B., Benchanak, K., Lipipun, V., Mathew, J. and Schinazi, R. F. 2005. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat. Prod. Res. 19, 177-182. https://doi.org/10.1080/14786410410001704813
  20. Lowe, S. W. and Lin, A. W. 2000. Apoptosis in cancer. Carcinogenesis 21, 485-495. https://doi.org/10.1093/carcin/21.3.485
  21. Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., Rader, J. A., van Schie, R. C., LaFace, D. M. and Green, D. R. 1995. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of bcl-2 and abl. J. Exp. Med. 182, 1545-1556. https://doi.org/10.1084/jem.182.5.1545
  22. Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. 2010. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241. https://doi.org/10.1016/j.tox.2009.10.010
  23. Porter, A. G. and Janicke, R. U. 1999. Emerging roles of caspase- 3 in apoptosis. Cell Death Differ. 6, 99-104. https://doi.org/10.1038/sj.cdd.4400476
  24. Riccardi, C. and Nicoletti, I. 2006. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458-1461. https://doi.org/10.1038/nprot.2006.238
  25. Riedl, S. J. and Shi, Y. 2004. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897-907.
  26. Singh, S., Singh, P. P., Roberts, L. R. and Sanchez, W. 2014. Chemopreventive strategies in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 11, 45-54. https://doi.org/10.1038/nrgastro.2013.143
  27. Sritularak, B. and Likhitwitayawuid, K. 2006. Flavonoids from the pods of Millettia erythrocalyx. Phytochemistry 67, 812-817. https://doi.org/10.1016/j.phytochem.2006.01.013
  28. Stewart, B. W. and Wild, C. P. 2014. World cancer report 2014. International Agency for Research on Cancer (IARC), Geneva, World Health Organization.
  29. Strasser, A. and Newton, K. 1999. FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int. J. Biochem. Cell Biol. 31, 533-537. https://doi.org/10.1016/S1357-2725(99)00003-5
  30. Taylor, R. C., Cullen, S. P. and Martin, S. J. 2008. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231-241. https://doi.org/10.1038/nrm2312
  31. Tsujimoto, Y. and Shimizu, S. 2000. Bcl-2 family: life-ordeath switch. FEBS Lett. 466, 6-10. https://doi.org/10.1016/S0014-5793(99)01761-5
  32. Yin, S. Y., Wei, W. C., Jian, F. Y. and Yang, N. S. 2013. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement Alternat. Med. 2013, 302426.
  33. Yuan, R., Hou, Y., Sun, W., Yu, J., Liu, X., Niu, Y., Lu, J. J. and Chen, X. 2017. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann. N. Y. Acad. Sci. 1401, 19-27. https://doi.org/10.1111/nyas.13387
  34. Zou, H., Li, Y., Liu, X. and Wang, X. 1999. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549-11556. https://doi.org/10.1074/jbc.274.17.11549