• Title/Summary/Keyword: caspase-3-8 and -9

Search Result 280, Processing Time 0.034 seconds

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 apoptosis 유발에 미치는 삼기보배탕의 영향)

  • Heo, Man-Kyu;Heo, Tae-Yool;Kim, Ki-Tak;Byun, Mi-Kwon;Kim, Jin-Young;Sim, Sung-Heum;Kim, Koang-Lock;Kam, Cheol-Woo;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.473-491
    • /
    • 2007
  • Objectives : This study was designed to investigate the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines Methods : In this study, we measured the subsistence, form of NCI-H460 and A549 non-small-cell lung cancer cell by hemocytometer and DAPI staining. In each cell, we analyzed DNA fragmentation. reverse transcription-polymerase chain reaction and measured activity of caspase-3, caspase-8 and caspase-9. Results and Conclusions : We found that exposure of A549 cells to SGBPT resulted in growth inhibition in a dose-dependent manner. butSGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes. SGBPT treatment partially induced the expression of DR5 cells and the expression of Faswas markedly increased in both transcriptional and translational levels in A549 cells. SGBPT treatment partially induced the expression of Bcl-2, Bcl-XL and the expression of Bid was markedly decreased in translational levels in A549 cells. However, SGBPT treatment did not affect the expression of IAP family in A549 orNCI-H460 cells. SGBPT treatment partially induced the expression of caspase-3, caspase-8, caspase-9 activity which markedly increased in a dose-dependent manners in A549 cells. The fragmental development of PARP and ${\beta}$-catenin protein was observed in A549 cells by SGBPT treatment. SGBPT treatment induced the expression of PLC-${\gamma}1$ protein which decreased in A549 cells. SGBPT treatment partially induced the expression of DFF45/ICAD which markedly increased in a dose-dependent manner in A549 cells. Taken together. these findings suggested that SGBPT-induced inhibition of human lung carcinoma did not affect NCI-H460 cell growth. However, SGBPT-induced inhibition of human lung carcinoma A549 cell growth was associated with the induction of death receptor and mitochondrial pathway. The results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.

  • PDF

Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells (동충하초 유래 cordycepin에 의한 AGS 인체 위암세포의 apoptosis 유발)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.847-854
    • /
    • 2016
  • Cordycepin, a derivative of the nucleoside adenosine, is one of the active components extracted from fungi of genus Cordyceps, and has been shown to have many pharmacological activities. In this study, we investigated the effects of cordycepin on proliferation and apoptosis of human gastric cancer AGS cells, and its possible mechanism of action. Treatment of cordycepin resulted in significant decrease in cell viability of AGS cells in a concentration-dependent manner. A concentration-dependent apoptotic cell death was also measured by agarose gel electrophoresis and flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in an enhanced expression of tumor necrosis factor-related apoptosis-inducing ligand, death receptor 5 and Fas ligand. Furthermore, up-regulation of pro-apoptotic Bax, and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression were also observed in cordycepin-treated AGS cells. These were followed by activation of caspases (caspase-9, -8 and -3), subsequently leading to poly (ADP-ribose) polymerase cleavage. Taken together, these findings indicate that cordycepin induces apoptosis in AGS cells through regulation of multiple apoptotic pathways, including death receptor and mitochondria. Although further mechanical studies are needed, our results revealed that cordycepin can be regarded as a new effective and chemopreventive compound for human gastric cancer treatment.

Induction of Apoptosis by Gamisamgibopae-tang in A549 Human Lung Cancer Cells through Modulation of Bcl-2 Family and Activation of Caspases (Bcl-2 family 발현 변화 및 caspases의 활성을 통한 가미삼기보폐탕의 A549 인체폐암세포 apoptosis 유도)

  • Kim, Hyun-Joong;Kim, Hong-Gi;Kim, Jin-Young;Kam, Cheol-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.630-641
    • /
    • 2008
  • Gamisamgibopae-tang (GMSGBPT) is a traditional Korean medicine, which has been used for patients suffering from a lung disease in Oriental medicine. In the present study, we examined the biochemical mechanisms of apoptosis by GMSGBPT in NCI-H460 and A549 human non-small-cell lung cancer cell lines. It was found that GMSGBPT could inhibit the cell proliferation of A549 cells in a concentration-dependent manner, however GMSGBPT did not affect the cell proliferation of NCI-H460 cells. Apoptotic cell death in A549 cells were detected using DAPI staining and annexin V fluorescein methods. The induction of apoptotic cell death by GMSGBPT was connected with a down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression, and proteolytic activation of caspase-3 and caspase-9 in A549 cells. However, GMSGBPT did not affect the levels of pro-apoptotic Bax and Bad expression, and activity of caspase-8. GMSGBPT treatment also concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, phospholipase C-1 (PLC${\gamma}$1) and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Taken together, these findings suggest that GMSGBPT may be a potential chemotherapeutic agent for the control of human non-small-cell lung cancer cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of GMSGBPT.

Downregulation of bcl-xL Is Relevant to UV-induced Apoptosis in Fibroblasts

  • Nakagawa, Yuki;Okada, Seiji;Hatano, Masahiko;Ebara, Masaaki;Saisho, Hiromitsu;Tokuhisa, Takeshi
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.452-458
    • /
    • 2002
  • Exposure to ultraviolet light (UV) induces apoptosis in mammalian cells, The caspase group of proteases is required for the appotosis. This pathway is initiated by a release of cytochrome c from the mitochondria into the cytosol. Several Bcl-2 family proteins can regulate the release of cytochrome c by stabilizing the mitochondrial membrane. Here we show that expression of the endogenous bcl-xL was strongly downregulated in NIH3T3 cells within 2 h after UV-C irradiation, and that of bax was upregulated from 8 h after irradiation. Apoptosis was induced in more than 50% of the NIH3T3 cells 48 h after irradiation. Constitutive overexpression of bcl-xL in NIH3T3 cells protected the UV-induced apoptosis by preventing the loss of mitochondrial membrane potential and the activation of caspase 9. There results suggest that downregulation of Bcl-xL is relevant to UV-induced apoptosis of tibroblasts.

Cannabidiol Induces Cytotoxicity and Cell Death via Apoptotic Pathway in Cancer Cell Lines

  • ChoiPark, Won-HyungHyun-Do;Baek, Seung-Hwa;Chu, Jong-Phil;Kang, Mae-Hwa;Mi, Yu-Jing
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In view of obtaining potential anticancer compounds, we studied the inhibitory activity and the cytotoxic effects of a candidate compound in cancer cells. The cytotoxic effects of cannabidiol (CBD) in vitro were evaluated in NIH3T3 fibroblasts, B16 melanoma cells, A549 lung cancer cells, MDA-MB-231 breast cancer cells, Lenca kidney cells and SNU-C4 colon cancer cells. The cells were cultured in various concentrations of CBD for 48 h and 25 ${\mu}$M of CBD for 6-36 h. The cells were observed to exhibit inhibitory effects of the cell viability in their growth, and then cytotoxicity was estimated. The inhibitory activity of CBD was increased in all cancer cells and showed especially strong increment in breast cancer cells. The cytotoxicity of CBD increased in a dose- and time-dependent manner with growth inhibition in all cancer cell lines. Also, to assess the membrane toxicity induced by CBD, we investigated lactate dehydrogenase (LDH) release. After treatment with various concentrations of CBD, LDH release rate of cancer cells was accelerated. On the other hand, in the induction of cell death, caspase-3, -8 and -9 activations were detected in cancer cells after treatment with various concentrations of CBD, and CBD effectively induced activity of caspase-3, -8 and -9 in A549 lung cancer cells, MDAMB-231 breast cancer cells and Renca kidney cells. Therefore these results suggest that CBD has a possibility of anticancer agents and anticancer effects against cancer cells by modulation of apoptotic pathway in the range of 5-80 ${\mu}$M concentration.

Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Lim, Jin Woong;Yu, Sun-Kyoung;Kim, Heung-Joong;Shin, Sang Hun;Park, Bo-Ram;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2020
  • Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4',6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

Activation of JNK/p38 Pathway is Responsible for α-Methyl-n-butylshikonin Induced Mitochondria-Dependent Apoptosis in SW620 Human Colorectal Cancer Cells

  • Wang, Hai-Bing;Ma, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6321-6326
    • /
    • 2014
  • ${\alpha}$-Methyl-n-butylshikonin (MBS), one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we assess the molecular mechanisms of MBS in causing apoptosis of SW620 cells. MBS reduced the cell viability of SW620 cells in a dose-and time-dependent manner and induced cell apoptosis. Treatment of SW620 cells with MBS down-regulated the expression of Bcl-2 and up-regulated the expression of Bak and caused the loss of mitochondrial membrane potential. Additionally, MBS treatment led to activation of caspase-9, caspase-8 and caspase-3, and cleavage of PARP, which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. MBS also induced significant elevation in the phosphorylation of JNK and p38. Pretreatment of SW620 cells with specific inhibitors of JNK (SP600125) and p38 (SB203580) abrogated MBS-induced apoptosis. Our results demonstrated that MBS inhibited growth of colorectal cancer SW620 cells by inducing JNK and p38 signaling pathway, and provided a clue for preclinical and clinical evaluation of MBS for colorectal cancer therapy.

Effect of a Fibrinolytic Enzyme (BK-17) from Bacillus subtilis on Apoptosis Induction in AGS and T24 Human Carcinoma Cells (인간 암세포인 AGS와 T24에서의 apoptosis 유도에 미치는 Bacillus subtilis 혈전용해효소 BK-17의 영향)

  • Baik, Hyun;Seo, Min Jeong;Kim, Min Jeong;Lee, Hye Hyeon;Kang, Byoung Won;Park, Jeong Uck;Choi, Yung Hyun;Seo, Kwon Il;Jeong, Yong Kee
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1252-1259
    • /
    • 2013
  • To investigate the effects of a fibrinolytic enzyme, BK-17, on the growth of human cancer cells, we performed various biochemical experiments, including cell proliferation and viability, and investigated subsequent morphological changes and apoptosis induction. BK-17 treatment of AGS human gastric and T24 human bladder carcinoma cells decreased the viability and the proliferation of the cells in a concentration-dependent manner. Microscopic studies indicated that the antiproliferative effects of the BK-17 treatment were associated with morphological changes, such as membrane shrinking, cell rounding up, and the formation of apoptotic bodies, indicating that BK-17 induced apoptosis in the cell lines. Of note, RT-PCR and Western blotting data indicated that the BK-17 treatment induced the down-regulation of antiapoptotic Bcl-2 members, Bcl-2 and $Bcl-X_L$, and the up-regulation of proapoptotic Bax members, Bax and Bad, in the AGS cells. BK-17-induced apoptosis of AGS cells was involved in the proteolytic activation of caspase-3, caspase-8, and caspase-9. Taken together, these findings suggest that BK-17 is associated with the induction of apoptotic cell death.

Serum Deprivation Enhances Apoptotic Cell Death by Increasing Mitochondrial Enzyme Activity

  • Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Mitochondria are important sensor of apoptosis. $H_2O_2-induced$ cell death rate was enhanced by serum deprivation. In this study, we investigated whether serum deprivation using 0.5 or 3 % FBS induces apoptotic cell death through mitochondrial enzyme activation as compared to 10 % FBS. Apoptotic cell death was observed by chromosome condensation and the increase of sub-G0/G1 population. Serum deprivation reduced cell growth rate, which was confirmed by the decrease of S-phase population in cell cycle. Serum deprivation significantly increased caspase-9 activity and cytochrome c release from mitochondria into cytosol. Serum deprivation-induced mitochondrial changes were also indicated by the increase of ROS production and the activation of mitochondrial enzyme, succinate dehydrogenase. Mitochondrial enzyme activity increased by serum deprivation was reduced by the treatment with rotenone, mitochondrial electron transport inhibitor. In conclusion, serum deprivation induced mitochondrial apoptotic cell death through the elevation of mitochondrial changes such as ROS production, cytochrome c release and caspase-9 activation. It suggests that drug sensitivity could be enhanced by the increase of mitochondrial enzyme activity in serum-deprived condition.