Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.10.1252

Effect of a Fibrinolytic Enzyme (BK-17) from Bacillus subtilis on Apoptosis Induction in AGS and T24 Human Carcinoma Cells  

Baik, Hyun (Amaranth-Cosmetics Co.)
Seo, Min Jeong (Department of Biotechnology, Dong-A University)
Kim, Min Jeong (Department of Biotechnology, Dong-A University)
Lee, Hye Hyeon (Department of Biotechnology, Dong-A University)
Kang, Byoung Won (Medi-Farm Industrialization Research Center, Dong-A University)
Park, Jeong Uck (Medi-Farm Industrialization Research Center, Dong-A University)
Choi, Yung Hyun (Department of Biochemistry, College of Oriental Medicine and Research Institute of Oriental Medicine, Department of Biomaterial Control, Graduate School and Blue-Bio Industry Regional Innovation Center, Dongeui University)
Seo, Kwon Il (Department of Food Nutrition, Sunchon National University)
Jeong, Yong Kee (Department of Biotechnology, Dong-A University)
Publication Information
Journal of Life Science / v.23, no.10, 2013 , pp. 1252-1259 More about this Journal
Abstract
To investigate the effects of a fibrinolytic enzyme, BK-17, on the growth of human cancer cells, we performed various biochemical experiments, including cell proliferation and viability, and investigated subsequent morphological changes and apoptosis induction. BK-17 treatment of AGS human gastric and T24 human bladder carcinoma cells decreased the viability and the proliferation of the cells in a concentration-dependent manner. Microscopic studies indicated that the antiproliferative effects of the BK-17 treatment were associated with morphological changes, such as membrane shrinking, cell rounding up, and the formation of apoptotic bodies, indicating that BK-17 induced apoptosis in the cell lines. Of note, RT-PCR and Western blotting data indicated that the BK-17 treatment induced the down-regulation of antiapoptotic Bcl-2 members, Bcl-2 and $Bcl-X_L$, and the up-regulation of proapoptotic Bax members, Bax and Bad, in the AGS cells. BK-17-induced apoptosis of AGS cells was involved in the proteolytic activation of caspase-3, caspase-8, and caspase-9. Taken together, these findings suggest that BK-17 is associated with the induction of apoptotic cell death.
Keywords
Apoptosis; AGS; fibrinolytic enzyme; Bacillokinase (BK); T24;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Antonsson, B. and Martinou, J. C. 2000. The Bcl-2 protein family. Exp Cell Res 256, 50-57.   DOI   ScienceOn
2 Cheng, J. Q., Jiang, X., Fraser, M.,Li, M., Dan, H. C., Sun, M. and Tsang, B. K. 2002. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway, Drug Resist Update 5, 131-146.   DOI   ScienceOn
3 Chiarugi, V., Magneli, L., Cinelli, M. and Basi, G. 1994. Apoptosis and the cell cycle. Cell Mol Biol Res 40, 603-612.
4 Choi, Y. H., Kong, K. R., Kim, Y. A., Jung,K. O., Kil, J. H., Rhee, S. H. and Park, K. Y. 2003. Induction of Bax and activation of caspases during ${\beta}$-sitosterol-mediated apoptosis in human colon cancer cells. Int J Oncol 23, 1657-1661.
5 Choi, Y. H., Lee, S. J., Nguyen,P., Jang,J. S., Lee, J., Wu, M. L., Takano, E., Maki, M.,Henkart, P. A. and Trepel, J. B. 1997. Regulation of cyclin D1 by calpain protease. J Biol Chem 272, 28479-28484.   DOI   ScienceOn
6 Evans, V. G. 1993. Multiple pathways to apoptosis. Cell Biol Int 17, 461-476.   DOI   ScienceOn
7 Gerschenson, L. E. and Rotello, R. J. 1992. Apoptosis: a different type of cell death. FASEB J 6, 2450-2455.
8 Holcik, M., Gibsonand, H. and Korneluk, R. G. 2001. XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6, 253-261.   DOI   ScienceOn
9 Jeong, Y. K., Park, J. U., Baek, H., Park, S. H., Kong, I. S., Kim, D. W. and Joo, W. H. 2001. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J Microbiol Biotechnol 17, 89-92.   DOI   ScienceOn
10 Jiang, C, Y., Yang, F. and Cheng, S. H. 2004. Fas ligand gene therapy for vascular intimal hyperplasia. Curr Gene Ther 4, 33-39.   DOI   ScienceOn
11 Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D. and Reed, J. C. 1998. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95, 4997-5002.   DOI   ScienceOn
12 LaCasse, E. C., Baird, S., Korneluk, R. G. and MacKenzie, A. E. 1998. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17, 3247-3259.
13 Lenaz, G., Bovina, C., Formiggini, G. and Castelli, G. P. 1999. Mitochondria, oxidative stress, and antioxidant defences. Acta Biochim Pol 46, 1-21.
14 Lieberthal, W., Koh, J. S. and Levine, J. S. 1998. Necrosis and apoptosis in acute renal failure. Semin Nephrol 18, 505-518.
15 Miyashita, T., Krajewski, S., Krajewska, M., Wang, H. G., Lin, H. K., Liebermann, D. A., Hoffman, B. and Reed, J. C. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799-1805.
16 Nagata, S. and Golstein, P. 1996. The Fas death factor. Science 267, 1449-1456.
17 Rosse T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B. and Borner, C. 1998. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496-499.   DOI   ScienceOn
18 Salvesen, G. S. and Duckett, C. S. 2002. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3, 401-410.   DOI   ScienceOn
19 Schultz, D. R. and Harrington, Jr. W. J. 2003. Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum 32, 345-369.   DOI   ScienceOn
20 Shi, L., Nishioka, W. K., Th'ng, J., Bradbury, E. M., Litchfield, D. W. and Greenberg, A. H. 1994. Premature p34cdc2 activation required for apoptosis. Science 263, 1143-1145.   DOI
21 Zimmermann, K. C., Bonzon, C. and Green, D. R. 2001. The machinery of programmed cell death. Pharmacol Ther 92, 57-70.   DOI   ScienceOn