Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.7.847

Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells  

Lee, Hye Hyeon (Anti-Aging Research Center, Dongeui University)
Jeong, Jin-Woo (Anti-Aging Research Center, Dongeui University)
Choi, Yung Hyun (Anti-Aging Research Center, Dongeui University)
Publication Information
Journal of Life Science / v.26, no.7, 2016 , pp. 847-854 More about this Journal
Abstract
Cordycepin, a derivative of the nucleoside adenosine, is one of the active components extracted from fungi of genus Cordyceps, and has been shown to have many pharmacological activities. In this study, we investigated the effects of cordycepin on proliferation and apoptosis of human gastric cancer AGS cells, and its possible mechanism of action. Treatment of cordycepin resulted in significant decrease in cell viability of AGS cells in a concentration-dependent manner. A concentration-dependent apoptotic cell death was also measured by agarose gel electrophoresis and flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in an enhanced expression of tumor necrosis factor-related apoptosis-inducing ligand, death receptor 5 and Fas ligand. Furthermore, up-regulation of pro-apoptotic Bax, and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression were also observed in cordycepin-treated AGS cells. These were followed by activation of caspases (caspase-9, -8 and -3), subsequently leading to poly (ADP-ribose) polymerase cleavage. Taken together, these findings indicate that cordycepin induces apoptosis in AGS cells through regulation of multiple apoptotic pathways, including death receptor and mitochondria. Although further mechanical studies are needed, our results revealed that cordycepin can be regarded as a new effective and chemopreventive compound for human gastric cancer treatment.
Keywords
AGS cells; apoptosis; caspase; cordycepin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, H. H., Park, C., Jeong, J. W., Kim, M. J., Seo, M. J., Kang, B. W., Park, J. U., Kim, G. Y., Choi, B. T., Choi, Y. H. and Jeong, Y. K. 2013. Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen species mediated mitochondrial death pathway. Int. J. Oncol. 42, 1036-1044.
2 Lee, S. Y., Debnath, T., Kim, S. K. and Lim, B. O. 2013. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem. Toxicol. 60, 439-447.   DOI
3 Lee, H. H., Jeong, J. W., Lee, J. H., Kim, G. Y., Cheong, J., Jeong, Y. K., Yoo, Y. H. and Choi, Y. H. 2013. Cordycepin increases sensitivity of Hep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol. Rep. 30, 1257-1264.
4 Lee, H. H., Kim, S. O., Kim, G. Y., Moon, S. K., Kim, W. J., Jeong, Y. K., Yoo, Y. H. and Choi, Y. H. 2014. Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ. Toxicol. Pharmacol. 38, 239-250.   DOI
5 Seong da, B., Hong, S., Muthusami, S., Kim, W. D., Yu, J. R. and Park, W. Y. 2016. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur. J. Pharmacol. 771, 77-83.   DOI
6 Lee, H. H., Hwang, W. D., Jeong, J. W., Park, C., Han, M. H., Hong, S. H., Jeong, Y. K. and Choi, Y. H. 2014. Induction of apoptosis and G2/M cell cycle arrest by cordycepin in human prostate carcinoma LNCap cells. J. Life Sci. 24, 92-97.   DOI
7 Li, Y., Li, R., Zhu, S., Zhou, R., Wang L, Du, J, Wang, Y., Zhou, B. and Mai, L. 2015. Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE(2)-M17 cells. Oncol. Lett. 9, 2541-2547.
8 Liang, Z. C., Liang, C. H. and Wu, C. Y. 2014. Various grain substrates for the production of fruiting bodies and bioactive compounds of the medicinal caterpillar mushroom, Cordyceps militaris (Ascomycetes). Int. J. Med. Mushrooms 16, 569-578.   DOI
9 Nair, C. N. and Owens, M. J. 1974. Preliminary observations pertaining to polyadenylation of rhinovirus RNA. J. Virol. 13, 535-537.
10 Ola, M. S., Nawaz, M. and Ahsan, H. 2011. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol. Cell. Biochem. 351, 41-58.   DOI
11 Stennicke, H. R. and Salvesen, G. S. 1999. Catalytic properties of the caspases. Cell Death Differ. 6, 1054-1059.   DOI
12 Thomadaki, H., Scorilas, A., Tsiapalis, C. M. and Havredaki, M. 2008. The role of cordycepin in cancer treatment via induction or inhibition of apoptosis: implication of polyadenylation in a cell type specific manner. Cancer Chemother. Pharmacol. 61, 251-265.
13 Thomadaki, H., Tsiapalis, C. M. and Scorilas, A. 2005. Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol. Chem. 386, 471-480.
14 Wang, X. A., Xiang, S. S., Li, H. F., Wu, X. S., Li, M. L., Shu, Y. J., Zhang, F., Cao, Y., Ye, Y. Y., Bao, R. F., Weng, H., Wu, W. G., Mu, J. S., Hu, Y. P., Jiang, L., Tan, Z. J., Lu, W., Wang, P. and Liu, Y. B. 2014. Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules 19, 11350-11365.   DOI
15 Cunningham, K. G., Manson, W., Spring, F. S. and Hutchinson, S. A. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166, 949.
16 Agarwal, A., Mahfouz, R. Z., Sharma, R. K., Sarkar, O., Mangrola, D. and Mathur, P. P. 2009. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod. Biol. Endocrinol. 7, 143-163.   DOI
17 Chen, L. S., Stellrecht, C. M. and Gandhi, V. 2008. RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells. Br. J. Haematol. 140, 682-391.   DOI
18 Chen, Y., Chen, Y. C., Lin, Y. T., Huang, S. H. and Wang, S. M. 2010. Cordycepin induces apoptosis of CGTH W-2 thyroid carcinoma cells through the calcium-calpain-caspase 7-PARP pathway. J. Agric. Food Chem. 58, 11645-11652.   DOI
19 Chen, Y. H., Hao, L. J., Hung, C. P., Chen, J. W., Leu, S. F. and Huang, B. M. 2014. Apoptotic effect of cisplatin and cordycepin on OC3 human oral cancer cells. Chin. J. Integr. Med. 20, 624-632.   DOI
20 Choi, S., Lim, M. H., Kim, K. M., Jeon, B. H., Song, W. O. and Kim, T. W. 2011. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol. Appl. Pharmacol. 257, 165-173.   DOI
21 Danson, S., Dean, E., Dive, C. and Ranson, M. 2007. IAPs as a target for anticancer therapy. Curr. Cancer Drug Targets 7, 785-794.   DOI
22 de Graaf, A. O., de Witte, T. and Jansen, J. H. 2004. Inhibitor of apoptosis proteins: new therapeutic targets in hematological cancer? Leukemia 18, 1751-1759.   DOI
23 Duriez, P. J. and Shah, G. M. 1997. Cleavage of poly (ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem. Cell. Biol. 75, 337-349.   DOI
24 Fiandalo, M. V. and Kyprianou, N. 2012. Caspase control: protagonists of cancer cell apoptosis. Exp. Oncol. 34, 165-175.
25 Jeong, J. W. and Choi, Y. H. 2014. Cordycepin inhibits the migration and invasion of HCT116 human colorectal carcinoma cells through the tightening of tight junctions and inhibition of matrix metalloproteinase activity. J. Kor. Soc. Food Sci. Nutr. 43, 86-92.   DOI
26 Fulda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811.   DOI
27 Hensley, P., Mishra, M. and Kyprianou, N. 2013. Targeting caspases in cancer therapeutics. Biol. Chem. 394, 831-843.
28 Jang, K. J., Kwon, G. S., Jeong, J. W., Kim, C. H., Yoon, H. M., Kim, G. Y., Shim, J. H., Moon, S. K., Kim, W. J. and Choi, Y. H. 2015. Cordyceptin induces apoptosis through repressing hTERT expression and inducing extranuclear export of hTERT. J. Biosci. Bioeng. 119, 351-357.   DOI
29 Jeong, J. W., Jin, C. Y., Park, C., Han, M. H., Kim, G. Y., Moon, S. K., Kim, C. G., Jeong, Y. K., Kim, W. J., Lee, J. D. and Choi, Y. H. 2012. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int. J. Oncol. 40, 1697-1704.
30 Jeong, J. W., Jin, C. Y., Park, C., Hong, S. H., Kim, G. Y., Jeong, Y. K., Lee, J. D., Yoo, Y. H. and Choi, Y. H. 2011. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol. In Vitro 25, 817-824.   DOI
31 Kimberley, F. C. and Screaton, G. R. 2004. Following a TRAIL: update on a ligand and its five receptors. Cell Res. 14, 359-372.   DOI
32 Lavrik, I. N., Golks, A. and Krammer, P. H. 2005. Caspases: pharmacological manipulation of cell death. J. Clin. Invest. 115, 2665-2672.   DOI
33 Lavrik, I. N. 2010. Systems biology of apoptosis signaling networks. Curr. Opin. Biotechnol. 21, 551-555.   DOI