Browse > Article

Machanism of Cisplatin-induced Apoptosis and Bojungbangam-tang-mediated Anti-apoptotic Effect on Cell Proliferation in Rat Mesangial Cells  

Ju, Sung Min (Department of Pathology, College of Korean Medicine, Wonkwang University)
Kim, Sung Hoon (Cancer Preventive Material Development Research Center, College of Korean Medicine, Kyunghee University)
Kim, Yeong Mok (Department of Pathology, College of Korean Medicine, Wonkwang University)
Jeon, Byung Hun (Department of Pathology, College of Korean Medicine, Wonkwang University)
Kim, Won Sin (Department of Biological Science, College of Natural Sciences, Wonkwang University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.27, no.1, 2013 , pp. 43-48 More about this Journal
Abstract
Cisplatin is a anti-neoplastic agent which is commonly used for the treatment of solid tumor. Cisplatin activates multiple signal transduction pathways involved in the stress-induced apoptosis in a variety of cell types. Previous study reported that cisplatin induces apoptosis through activation of ERK, p38 and JNK in rat mesangial cells, but apoptotic pathway remain known. The present study investigated the apoptotic pathway for cisplatin-indcued apoptosis in rat mesangial cells. cisplatin-induced apoptosis was associated with activation of caspase-3, caspase-8, caspase-9. Caspase-8 inhibition prevented the activation of both caspase-3 and caspase-9. In addition, cisplatin-induced apoptosis increased the expression of Bax, but not the level of Bcl-2. These change of Bax/bcl-2 ratio caused the release of cytochrome c from mitochondria into cytosol. In previous study, the ethanol extract of Bojungbangam-tang (EBJT) inhibited cisplatin-induced apoptosis in rat mesangial cells through inhibition of ERK and JNK activation. However, EBJT did not increase cell proliferation, because it did not prevent cisplatin-induced G2/M phase arrest. These effect of EBJT may be related to p38 activation. Cisplatin-induced G2/M phase arrest are inhibited by treatment with p38 inhibitor and EBJT in rat mesangial cells. Also, p38 inhibition and EBJT treatment on cisplatin-induced G2/M phase arrest are markedly increased the G0/G1 phase and reduced the sub-G1. In conclusion, anti-apoptotic effet of EBJT did not increases cell proliferation, because EBJT did not reduce p38 activation related to cisplatin-induced G2/M phase arrest.
Keywords
Cisplatin; Rat mesangial cells; Bojungbangam-tang; G2/M phase arrest;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Timmer-Bosscha, H., Mulder, N.H., de Vries, E.G. Modulation of cis-diamminedichloroplatinum(II) resistance: a review. Br. J. Cancer 66: 227-238, 1992.   DOI   ScienceOn
2 Goldstein, R.S., Mayor, G.H. Minireview. The nephrotoxicity of cisplatin. Life Sci. 32: 685-690, 1983.   DOI   ScienceOn
3 Safirstein, R., Winston, J., Goldstein, M., Moel, D., Dikman, S., Guttenplan, J. Cisplatin nephrotoxicity. Am. J. Kidney Dis. 8: 356-367, 1986.   DOI
4 Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. Ther. 34: 155-166, 1987.   DOI   ScienceOn
5 Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265-7279, 2003.   DOI   ScienceOn
6 Kim, N.S., Ju, S.M., Kwon, Y.D., Shin, B.C., Ahn, K.S., Kim, S.H., Song, Y.S., Jeon, B.H. Anti-apoptotic Effect of Bojungbangam-tang Ethanol Extract on Cisplatin-Induced Apoptosis in Rat Mesangial Cells. Korean J. Oriental Physiology & Pathology 20: 1664-1671, 2006.
7 Céraline, J., Deplanque, G., Duclos, B., Limacher, J.M., Hajri, A., Noel, F., Orvain, C., Frébourg, T., Klein-Soyer, C., Bergerat, J.P. Inactivation of p53 in normal human cells increases G2/M arrest and sensitivity to DNA-damaging agents. Int. J. Cancer. 75: 432-438, 1998.   DOI
8 Zhou, H., Kato, A., Yasuda, H., Miyaji, T., Fujigaki, Y., Yamamoto, T., Yonemura, K., Hishida, A. The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol. Appl. Pharmacol. 200: 111-120, 2004.   DOI   ScienceOn
9 Guadagno, T.M., Ferrell, J.E. Jr. Requirement for MAPK activation for normal mitotic progression in Xenopus egg extracts. Science 282: 1312-1315, 1998.   DOI   ScienceOn
10 Wright, J.H., Munar, E., Jameson, D.R., Andreassen, P.R., Margolis, R.L., Seger, R., Krebs, E.G. Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA. 96: 11335-11340, 1999.   DOI
11 Bulavin, D.V., Higashimoto, Y., Popoff, I.J., Gaarde, W.A., Basrur, V., Potapova, O., Appella, E., Fornace, A.J. Jr. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411: 102-107, 2001.   DOI   ScienceOn
12 Wang, X., McGowan, C.H., Zhao, M., He, L., Downey, J.S., Fearns, C., Wang, Y., Huang, S., Han, J. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol. Cell Biol. 20: 4543-4552, 2000.   DOI   ScienceOn
13 Pae, H.O., Oh, H., Yun, Y.G., Oh, G.S., Jang, S.I., Hwang, K.M., Kwon, T.O., Lee, H.S., Chung, H.T. Imperatorin, a furanocoumarin from Angelica dahurica (Umbelliferae), induces cytochrome c-dependent apoptosis in human promyelocytic leukaemia, HL-60 Cells. Pharmacol. Toxicol. 91: 40-48, 2002.   DOI   ScienceOn
14 Kroemer, G., Zamzami, N., Susin, S.A. Mitochondrial control of apoptosis. Immunol. Today 18: 44-51, 1997.   DOI   ScienceOn
15 Mignotte, B., Vayssiere, J.L. Mitochondria and apoptosis. Eur. J. Biochem. 252: 1-15, 1998.   DOI   ScienceOn
16 Zou, H., Li, Y., Liu, X., Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274: 11549-11558, 1999.   DOI   ScienceOn
17 Kaufmann, S.H., Hengartner, M.O. Programmed cell death: alive and well in the new millennium. Trends Cell. Biol. 11: 526-534, 2001.   DOI   ScienceOn
18 Hengartner, M.O. The biochemistry of apoptosis. Nature 407: 770-776, 2000.   DOI   ScienceOn
19 Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803-815, 1996.   DOI   ScienceOn
20 Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., Peter, M.E. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14: 5579-5588, 1995.
21 Chandra, D., Liu, J.W., Tang, D.G. Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J, Biol. Chem. 277: 50842-50854, 2002.   DOI   ScienceOn
22 Green, D.R., Reed, J.C. Mitochondria and apoptosis. Science 281: 1309-1312, 1998.   DOI   ScienceOn
23 Zou, H., Henzel, W.J., Liu, X., Lutschg, A., Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405-413, 1997.   DOI   ScienceOn
24 Hsu, Y.T., Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273: 10777-10783, 1998.   DOI   ScienceOn
25 Murphy, K,M., Streips, U.N., Lock, R.B. Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene 18: 5991-5999, 1999.   DOI   ScienceOn
26 Gross, A., McDonnell, J.M., Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13: 1899-1911, 1999.   DOI   ScienceOn
27 Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W., Farber, J.L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273: 7770-7775, 1998.   DOI   ScienceOn
28 Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., Mac Gregor, G.R., Thompson, C.B., Korsmeyer, S.J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727-730, 2001.   DOI   ScienceOn
29 Johnson, B.W., Cepero, E., Boise, L.H. Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha. J. Biol. Chem. 275: 31546-31553, 2000.   DOI   ScienceOn
30 Finucane, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, T.G., Green, D.R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225-2233, 1999.   DOI   ScienceOn
31 Kluck, R.M., Bossy-Wetzel, E., Green, D.R., Newmeyer, D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1081-1082, 1997.   DOI   ScienceOn
32 Kim, H.J., Mun, J.Y., Chun, Y.J., Choi, K.H., Kim, M.Y. Bax-dependent apoptosis induced by ceramide in HL-60 cells. FEBS Lett. 505: 264-268, 2001.   DOI   ScienceOn