• Title/Summary/Keyword: caspase cascade

Search Result 86, Processing Time 0.031 seconds

Resveratrol and clofarabine induces a preferential apoptosis-activating effect on malignant mesothelioma cells by Mcl-1 down-regulation and caspase-3 activation

  • Lee, Yoon-Jin;Lee, Yong-Jin;Lee, Sang-Han
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.166-171
    • /
    • 2015
  • We previously demonstrated that resveratrol and clofarabine elicited a marked cytotoxicity on malignant mesothelioma (MM) MSTO-211H cells but not on the corresponding normal mesothelial MeT-5A cells. Little is known of the possible molecules that could be used to predict preferential chemosensitivity on MSTO-211H cells. Resveratrol and clofarabine induced downregulation of Mcl-1 protein level in MSTO-211H cells. Treatment of cells with cycloheximide in the presence of proteasome inhibitor MG132 suggested that Mcl-1 protein levels were regulated at the post-translational step. The siRNA-based knockdown of Mcl-1 in MSTO-211H cells triggered more growth-inhibiting and apoptosis-inducing effects with the resultant cleavages of procaspase-3 and its substrate PARP, increased caspase-3/7 activity, and increased percentage of apoptotic propensities. However, the majority of the observed changes were not shown in MeT-5A cells. Collectively, these studies indicate that the preferential activation of caspase cascade in malignant cells might have important applications as a therapeutic target for MM.

Eudesmols Induce Apoptosis through Release of Cytochrome c in HL-60 Cells

  • Hoang, Duc Manh;Trung, Trinh Nam;He, Long;Ha, Do Thi;Lee, Myoung-Sook;Kim, Bo-Yeon;Luong, Hoang Van;Ahn, Jong-Seog;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.16 no.2
    • /
    • pp.88-92
    • /
    • 2010
  • We verified that the apoptosis activities were examined by DNA fragmentation, flow cytometric analysis with annexin V staining, activation of caspase-3, and cytochrome c release. In the result, $\alpha$- and $\beta$-eudesmol induced DNA fragmentation in HL-60 cells at a concentration of $80\;{\mu}M$, respectively. Additionally, pro-apoptotic cells sorted by flow cytometry analysis were detected in HL-60 cells to 31.77 and 29.67% with $\acute{a}$- and $\beta$-eudesmol of $80\;{\mu}M$. Thus, both $\alpha$- and $\beta$-eudesmol exerted caspase-3 activation and cytochrome c release at $80\;{\mu}M$ in HL-60 cells. These results are firstly reported that the sesquiterpenes, $\alpha$- and $\beta$-eudesmol are apoptosis inducers through mitochondria-dependent caspase cascade in HL-60 cells.

Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade

  • Kim, Geun-Young;Park, Soon Yong;Jo, Ara;Kim, Mira;Leem, Sun-Hee;Jun, Woo-Jin;Shim, Sang In;Lee, Sang Chul;Chung, Jin Woong
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.531-536
    • /
    • 2015
  • Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536]

Silibinin Induces Apoptotic Cell Death Via ROS-dependent Mitochondrial Pathway in Human Glioma Cells

  • Shin, Won-Yong;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.888-894
    • /
    • 2009
  • It has been reported that silibinin, a natural polyphenolic flavonoid, induces cell death in various cancer cell types. However, the underlying mechanisms by which silibinin induces apoptosis in human glioma cells are poorly understood. The present study was therefore undertaken to examine the effect of silibinin on glioma cell apoptosis and to determine its underlying mechanism in human glioma cells. Apoptosis was estimated by FACS analysis. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (${\Psi}m$) were measured using fluorescence dyes DCFH-DA and $DiOC_6$(3), respectively. Cytochrome c release from mitochondria and caspase-3 activation were estimated by Western blot analysis using specific antibodies. Exposure of cells to 30 mM silibinin induced apoptosis starting at 6 h, with increasing effects after 12-48h in a time-dependent manner. Silibinin caused ROS generation and disruption of ym, which were associated with the silibinin-induced apoptosis. The silibinin-induced ROS generation and disruption in ym were prevented by inhibitors of mitochondrial electron transport chain. The hydrogen peroxide scavenger catalase blocked ROS generation and apoptosis induced by silibinin. Silibinin induced cytochrome c release into cytosolic fraction and its effect was prevented by catalase and cyclosporine A. Silibinin treatment caused caspase-3 activation, which was inhibited by DVED-CHO and cyclosporine A. Pretreatment of caspase inhibitors also protected against the silibinin-induced apoptosis. These findings indicate that ROS generation plays a critical role in the initiation of the silibinin-induced apoptotic cascade by mediation of the mitochondrial apoptotic pathway including the disruption of ${\Psi}m$, cytochrome c release, and caspase-3 activation.

The Effect of Sohaphyang-won's for Delayed Neuronal Death in Hypoxia (소합향원(蘇合香元)이 저산소증 유발 배양 대뇌신경세포에 미치는 영향)

  • Yun Kyoung-Sun;Jeong Sung-Hyun;Shin Gil-Cho;Lee Won-Chu;Moon Il-Su;Lee Ji-Hun
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.104-112
    • /
    • 2003
  • Objectives : The purpose of this study is to evaluate the effects of Sohaphyang-won and is to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20(E20) cortical cells of a guinea pig(Sprague Dawley). Methods : E20 cortical cells, used in this investigation were dissociated in Neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Sohaphyang-won was added to the culture media for 72 hours. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Sohaphyang-won's effects for neuronal death protection were evaluated by LDH assay and the mechanism was studied by Bcl-2, Bak, Bax, caspase family. Results : This study indicates that Sohaphyang-won's effects for neuronal death protection in hypoxia is confirmed by LDH assay by the method of Embryonic day 20(E20) cortical neuroblast. Conclusions : Sohaphyang-won's mechanism for neuronal death protection in hypoxia restrains inflow of cytochrome C into cellularity caused by Bcl-2 increase and reduces the caspase cascade initiator caspase-10 and the effector caspase-3.

  • PDF

Regulation of Preimplantation Development of Mouse Embryos by Solubilized Matrigel (용해된 Matrigel에 의한 생쥐 초기배아 발생의 조절)

  • 계명찬;정병목
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2001.02a
    • /
    • pp.68-70
    • /
    • 2001
  • 착상전 초기배아에서 용해된 Matrigedl에 의한 배아의 형태발생, 세포증식, apoptosis 및 UPK활성의 변화를 조사하였다. Matrigel (0.5%)을 첨가한 배양액에서 체외배양된 2-세포기 배아의 형태발생 및 포배당 세포수가 증가되었으며 (GF>GFR>control) 포배의 TUNEL 양성 할구 및 배아내 caspase-3의 활성이 감소되었다. (GF

  • PDF

Acacetin-induced Apoptosis of Human Breast Cancer MCF-7 Cells Involves Caspase Cascade, Mitochondria-mediated Death Signaling and SAPK/JNK1/2-c-Jun Activation

  • Shim, Hye-Young;Park, Jong-Hwa;Paik, Hyun-Dong;Nah, Seung-Yeol;Kim, Darrick S.H.L.;Han, Ye Sun
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition ($IC_{50}$) of MCF-7 cells at $26.4{\pm}0.7{\mu}M$ over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with $100{\mu}M$ acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun $NH_4$-terminal kinase 1/2 (SAPK/JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.

S-benzyl-cysteine-mediated Cell Cycle Arrest and Apoptosis Involving Activation of Mitochondrial-dependent Caspase Cascade through the p53 Pathway in Human Gastric Cancer SGC-7901 Cells

  • Sun, Hua-Jun;Meng, Lin-Yi;Shen, Yang;Zhu, Yi-Zhun;Liu, Hong-Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6379-6384
    • /
    • 2013
  • S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water-soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (${\Delta}{\Psi}m$), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

Apoptotic Effects and Mechanism Study of Scopoletin in HepG2 Cells (Scopoletin의 간암세포에 대한 고사 유도 효과 및 기전 연구)

  • Kwon Kang-Beom;Kim Eun-Kyung;Park Sung-Joo;Song Ho-Joon;Lee Young-Rae;Park Byung-Hyun;Park Jin-Woo;Ryu Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1594-1598
    • /
    • 2005
  • Scopoletin (6-methoxy-7-hydrorycournarin) is a phenolic coumarin and a member of the phytoalexins. In this study we investigated whether scopoletin causes apoptosis in human hepatoma HepG2 cells and, if so, by what mechanisms. We report that scopoletin induced apoptosis as confirmed by a chromatin condensation. The signal cascade acivated by scopoletin included the activation of caspase-3 as evidenced by increased pretense activity. Activation of caspase-3 resulted in the cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) to 85 kDa cleavage product in a dose-dependent fashion. Also, scopoletin-induced apoptotic mechanism of HepG2 cells involved the generation of hydrogen peroxide. Taken together, these results suggest that scopgletin induces hydrogen peroxide generation, which, in turn, causes activation of caspase-3, degradation of PARP, and eventually leads to apoptotic cell death in HepG2 cells.

Activation of PKC-$\beta$II-is Required for Vitamin E-Succinate-Induced Apoptosis of U937 Cells

  • Kim, Song-Ja;Park, Jae-Han;Lee, Sun-Ryung;Bang, Ok-Sun;Kang, Shin-Sung
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.279-285
    • /
    • 2000
  • Vitamin E-succinate (VES) treatment of U937 human monoblasts induced cells to undergo apoptosis. After 96 h of VES treatment at 10 $\mu$/ml, more than 80% of cells appeared apoptotic. Evidence for apoptosis by VES was based on propidium iodide staining for detection of chromatin condensational fragmentation and electrophoretic DNA ladder formation. Western blot analyses showed a transient increase in Fas and p21 protein levels up to 48 h alter the VES treatment. Protein expression and activity of CDK1 and lamin B degradation were remarkably induced by VES, following the cleavage of caspase-3 after 48 h. The VES-induced apoptosis was found to involve activation of PKC as shown by increases in membrane translocation of PKC$\beat$II and PKC activity. Pretreatment of GF109203X (PKC inhibitor) prior to VES treatment almost completely inhibited the induction of apoptosis as assessed by blockage of VES-induced caspase-3 activity and DNA fragmentation. However, GF109203X h8d no effect on the VES-induced nitric oxide synthesis, which was required for monocvtic differentiation in our previous report (J Cell Sci 111, 435, 1998). Taken together, our data suggest that induction of apoptosis by VES in U937 cells occurs through activation of PKC-$\beat$II resulting in the activation of caspase-3 cascade and is independent of nitric oxide.

  • PDF