Apoptotic Effects and Mechanism Study of Scopoletin in HepG2 Cells

Scopoletin의 간암세포에 대한 고사 유도 효과 및 기전 연구

  • Kwon Kang-Beom (Department of Physiology, School of Oriental Medicine, Wonkwang University) ;
  • Kim Eun-Kyung (Department of Physiology, School of Oriental Medicine, Wonkwang University) ;
  • Park Sung-Joo (Department of herbology, School of Oriental Medicine, Wonkwang University) ;
  • Song Ho-Joon (Department of herbology, School of Oriental Medicine, Wonkwang University) ;
  • Lee Young-Rae (Department of Biochemistry, Institute for Healthcare Technology Development, Medical School, Chonbuk National University) ;
  • Park Byung-Hyun (Department of Biochemistry, Institute for Healthcare Technology Development, Medical School, Chonbuk National University) ;
  • Park Jin-Woo (Department of Biochemistry, Institute for Healthcare Technology Development, Medical School, Chonbuk National University) ;
  • Ryu Do-Gon (Department of Physiology, School of Oriental Medicine, Wonkwang University)
  • 권강범 (원광대학교 한의과대학 생리학교실) ;
  • 김은경 (원광대학교 한의과대학 생리학교실) ;
  • 박성주 (원광대학교 한의과대학 본초학교실) ;
  • 송호준 (원광대학교 한의과대학 본초학교실) ;
  • 이영래 (전북대학교 의과대학 생화학교실, 전북대학교 헬스케어기술개발사업단) ;
  • 박병현 (전북대학교 의과대학 생화학교실, 전북대학교 헬스케어기술개발사업단) ;
  • 박진우 (전북대학교 의과대학 생화학교실, 전북대학교 헬스케어기술개발사업단) ;
  • 류도곤 (원광대학교 한의과대학 생리학교실)
  • Published : 2005.12.01

Abstract

Scopoletin (6-methoxy-7-hydrorycournarin) is a phenolic coumarin and a member of the phytoalexins. In this study we investigated whether scopoletin causes apoptosis in human hepatoma HepG2 cells and, if so, by what mechanisms. We report that scopoletin induced apoptosis as confirmed by a chromatin condensation. The signal cascade acivated by scopoletin included the activation of caspase-3 as evidenced by increased pretense activity. Activation of caspase-3 resulted in the cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) to 85 kDa cleavage product in a dose-dependent fashion. Also, scopoletin-induced apoptotic mechanism of HepG2 cells involved the generation of hydrogen peroxide. Taken together, these results suggest that scopgletin induces hydrogen peroxide generation, which, in turn, causes activation of caspase-3, degradation of PARP, and eventually leads to apoptotic cell death in HepG2 cells.

Keywords

References

  1. 대한병리학회. 병리학. 서울, 高文社. pp 201-222, 231-258, 1997.
  2. 송계용 外. 핵심병리학. 서울, 고려의학. pp 147-189, 1998.
  3. 東西醫學融合硏究會編. 臨床東西醫學. 서울, 영림사. pp 538-546, 1997.
  4. Cohen, J.J. Apoptosis. Immunol. Today 14, 126-130, 1993.
  5. Dewey, W.C., Ling, C.C., Meyn, R.E. Radiation-induced apoptosis :relevance to radiotherapy. Int J Radiat Oncol Biol Phys 33(4):781-796, 1995.
  6. Aihara, M., Scardino, P.T., Truong, L.D. et al. The frequency of apoptosis correlates with the prognosis of Gleason grade 3 adenocarcinoma of prostate. Cancer 75, 522-529, 1995.
  7. Komaki, R., Milas, L., Ro, J.Y. et al. Prognostic biomarker study in pathologically staged N1 non-small cell lung cancer. Int J Radiat Oncol Biol Phys 40, 787-796, 1998.
  8. Williams, G.T. Apoptosis in the immune system, J Patho 173, 1-4, 1994.
  9. Milross, C.G., Mason, K.A, Hunter, N.R., Chung, W.K., Peters, L.J., Milas, L. Relationship of Mititic arrest and apoptosis to antitumor effect of paclitaxel. J NCI 88, 1308-1314, 1996.
  10. Provinciali, M., Ciavattini, A., Di Stefano, G., Argentati, K., Garzetti, G.G. In vivo amifostine (WR-2721) prevents chemotherapy-induced apoptosis of peripheral blood lymphocytes from cancer patients. Life Sci 64(17):1525-1532, 1999.
  11. Shrivastava, P., Sodhi, A., Ranjan, P. Anticancer drug-induced apoptosis in human monocytic leukemic cell line U937 requires activation of endonuclease. Anticancer Drugs 11(1):39-48, 2000.
  12. Kang, T.H., Pae, H.O., Jeong, S.J., Yoo, J.C., Choi, B.M., Jun, C.D., Chung, H.T., Miyamoto, T., Higuchi, R., Kim, Y.C. Scopoletin: an inducible nitric oxide synthesis inhibitory active constituent from Artemisia feddei. Planta Med 65, 400-403, 1999.
  13. Oliveira, E.J., Romero, M.A., Silva, M.S., Silva, B.A., Medeiros, I.A. Intracellular calcium mobilization as a target for the spasmolytic action of scopoletin. Planta Med 67, 605-608, 2001.
  14. Shaw, C.Y., Chen, C.H., Hsu, C.C., Chen, C.C., Tsai, Y.C. Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phytother Res 17, 823-825, 2003.
  15. Liu, X.L., Zhang, L., Fu, X.L., Chen, K., Qian, B.C. Effect of scopoletin on PC3 cell proliferation and apoptosis. Acta Pharmacol Sin 22, 929-933, 2001.
  16. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254, 1976.
  17. V.J. Kidd. Proteolytic activities that mediate apoptosis. Annu Rev Physiol 60, 533-573, 1998.
  18. Searle, J., Kerr, J.F.R., Bishop, C.J. Necrosis and apoptosis : distinct modes of cell death with fundamentally different significance. Pathol Annu 17, 229-259, 1982.
  19. Robaye, B., Mosselmans, R., Fiers, W., Dumont, J.E., Galand, P. Tumor necrosis factor induces apoptosis in normal endotherial cells in vitro. Am J Pathol 138, 447-453, 1991.
  20. Klaus, S.O., Davide, F. Apoptosis signal by death receptors. Eur J Biochem 254, 439-459, 1998.
  21. Zou, H., Henzel, W.J., Liu, X., Lutschg, A., Wang, X. Apaf-1, a human protein homologues to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3, Cell 90, 405-413, 1997.
  22. Chinnaiyan, A.M., O’Rourke, K., Lane, B.R., Dixit, V.M. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275, 1122-1126, 1997.
  23. Vaux, D.L. CED-4--the third horseman of apoptosis. Cell 90, 389-390, 1997.
  24. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489, 1997.
  25. Lazebnik, Y.A. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371, 346-347, 1994.
  26. Wang, Z.Q. Mice lacking ADPRT and poly (ADP-ribosyl) ation develop normally but are susceptable to skin disease, Genes Dev 9, 509-520, 1995.
  27. Chang, L.C., Tsai, T.R., Wang, J.J., Lin, C.N., Kuo, K.W. The rhamnose moiety of solamargine plays a crucial role in triggering cell death by apoptosis, Biochem Biophys Res Commun 242(1):21-25, 1998.
  28. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G., Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347, 1994.
  29. Mashima, T., Naito, M., Noguchi, K., Miller, D.K., Nicholson, D.W., Tsuruo, T. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene 14, 1007-1012, 1997.
  30. Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski, D.J., Williams, L.T. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-298, 1997.
  31. Zhivotovsky, B., Burgess, D.H., Vanags, D.M., Orrenius, S. Involvement of cellular proteolytic machinery in apoptosis. Biochem Biophys Res Commun 230, 481-488, 1997.
  32. Kwon, K.B., Yang, J.Y., Ryu, D.G., Rho, H.W., Kim, J.S., Park, J.W., Kim, H.R., Park, B.H. Vibrio vulnificus cytolysin induces superoxide anion-initiated apoptotic signaling pathway in human ECV304 cells. Journal of Biological Chemistry 276(50):47518-47523, 2001.
  33. Kwon, K.B., Yoo, S.J., Ryu, D.G., Yang, J.Y., Rho, H.W., Kim, J.S., Park, J.W., Kim, H.R., Park, B.H. Induction of apoptosis by diallyl disulfide through activation of caspase-3 in human leukemia HL-60 cells. Biochemical Pharmacology 63, 41-47, 2002.
  34. Chen, Y.C., Lin-Shiau, S.Y., Lin, J.K. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177, 324-333, 1998.
  35. Hildeman, D.A., Mitchell, T., Teague, T.K., Henson, P., Day B.J., Kappler, J., Marrack, P.C. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735-744, 1999.