• Title/Summary/Keyword: cascode amplifier

Search Result 105, Processing Time 0.022 seconds

An 1.2V 10b 500MS/s Single-Channel Folding CMOS ADC (1.2V 10b 500MS/s 단일채널 폴딩 CMOS A/D 변환기)

  • Moon, Jun-Ho;Park, Sung-Hyun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.14-21
    • /
    • 2011
  • A 10b 500MS/s $0.13{\mu}m$ CMOS ADC is proposed for 4G wireless communication systems such as a LTE-Advanced and SDR The ADC employs a calibration-free single-channel folding architecture for low power consumption and high speed conversion rate. In order to overcome the disadvantage of high folding rate, at the fine 7b ADC, a cascaded folding-interpolating technique is proposed. Further, a folding amplifier with the folded cascode output stage is also discussed in the block of folding bus, to improve the bandwidth limitation and voltage gain by parasitic capacitances. The chip has been fabricated with $0.13{\mu}m$ 1P6M CMOS technology, the effective chip area is $1.5mm^2$. The measured results of INL and DNL are within 2.95LSB and l.24LSB at 10b resolution, respectively. The SNDR is 54.8dB and SFDR is 63.4dBc when the input frequency is 9.27MHz at sampling frequency of 500MHz. The ADC consumes 150mW($300{\mu}W/MS/s$) including peripheral circuits at 500MS/s and 1.2V(1.5V) power supply.

A Novel Third-Order Cascaded Sigma-Delta Modulator using Switched-Capacitor (스위치형 커패시터를 이용한 새로운 형태의 3차 직렬 접속형 시그마-델타 변조기)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.197-204
    • /
    • 2010
  • This paper proposes a new body-effect compensated switch configuration for low voltage and low distortion switched-capacitor (SC) applications. The proposed circuit allows rail-to-rail switching operation for low voltage SC circuits and has better total harmonic distortion than the conventional bootstrapped circuit by 19 dB. A 2-1 cascaded sigma-delta modulator is provided for performing the high-resolution analog-to-digital conversion on audio codec in a communication transceiver. An experimental prototype for a single-stage folded-cascode operational amplifier (opamp) and a 2-1 cascaded sigma-delta modulator has been implemented m a 0.25 micron double-poly, triple-metal standard CMOS process with 2.7 V of supply voltage. The 1% settling time of the opamp is measured to be 560 ns with load capacitance of 16 pF. The experimental testing of the sigma-delta modulator with bit-stream inspection and analog spectrum analyzing plot is performed. The die size is $1.9{\times}1.5\;mm$.

Design of Temperature Compensation Circuit for W-band Radar Receiver (W-band 레이더 수신기용 온도보상회로 설계)

  • Lee, Dongju;Kim, Wansik;Kwon, Jun-Beom;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2020
  • In this paper, a temperature compensation circuit is presented in order to mitigate gain variability due to temperature in the W-band low-noise amplifier (LNA). The proposed cascode temperature compensation bias circuit automatically controls gate bias voltages of the common-source LNA in order to suppress variations of small-signal gain. The designed circuit was realized in a 100-nm GaAs pHEMT process. The simulated voltage gain of W-band LNA including the proposed bias circuit is >20 dB with gain variability less than ±0.8 dB in the range of temperatures between -35 to 71℃. We expect that the proposed circuit contributes to millimeter-wave receivers for stable performances in radar applications.

Design of CMOS Multifunction ICs for X-band Phased Array Systems (CMOS 공정 기반의 X-대역 위상 배열 시스템용 다기능 집적 회로 설계)

  • Ku, Bon-Hyun;Hong, Song-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.6-13
    • /
    • 2009
  • For X-band phased array systems, a power amplifier, a 6-bit phase shifter, a 6-bit digital attenuator, and a SPDT transmit/receive (T/R) switch are fabricated and measured. All circuits are demonstrated by using CMOS 0.18 um technology. The power amplifier has 2-stage differential and cascade structures. It provides 1-dB gain-compressed output power ($P_{1dB}$) of 20 dBm and power-added-efficiency (PAE) of 19 % at 8-11 GHz frequencies. The 6-bit phase shifter utilizes embedded switched filter structure which consists of nMOS transistors as a switch and meandered microstrip lines for desired inductances. It has $360^{\circ}$ phase-control range and $5.6^{\circ}$ phase resolution. At 8-11 GHz frequencies, it has RMS phase and amplitude errors are below $5^{\circ}$ and 0.8 dB, and insertion loss of $-15.7\;{\pm}\;1,1\;dB$. The 6-bit digital attenuator is comprised of embedded switched Pi-and T-type attenuators resistive networks and nMOS switches and employes compensation circuits for low insertion phase variation. It has max. attenuation of 31.5 dB and 0.5 dB amplitude resolution. Its RMS amplitude and phase errors are below 0.4 dB and $2^{\circ}$ at 8-11 GHz frequencies, and insertion loss is $-10.5\;{\pm}\;0.8\;dB$. The SPDT T/R switch has series and shunt transistor pairs on transmit and receive path, and only one inductance to reduce chip area. It shows insertion loss of -1.5 dB, return loss below -15 dB, and isolation about -30 dB. The fabricated chip areas are $1.28\;mm^2$, $1.9mm^2$, $0.34\;mm^2$, $0.02mm^2$, respectively.

A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology (45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC)

  • An, Tai-Ji;Park, Jun-Sang;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.122-130
    • /
    • 2013
  • This work proposes a 12b 100MS/s 45nm CMOS four-step pipeline ADC for high-speed digital communication systems requiring high resolution, low power, and small size. The input SHA employs a gate-bootstrapping circuit to sample wide-band input signals with an accuracy of 12 bits or more. The input SHA and MDACs adopt two-stage op-amps with a gain-boosting technique to achieve the required DC gain and high signal swing range. In addition, cascode and Miller frequency-compensation techniques are selectively used for wide bandwidth and stable signal settling. The cascode current mirror minimizes current mismatch by channel length modulation and supply variation. The finger width of current mirrors and amplifiers is laid out in the same size to reduce device mismatch. The proposed supply- and temperature-insensitive current and voltage references are implemented on chip with optional off-chip reference voltages for various system applications. The prototype ADC in a 45nm CMOS demonstrates the measured DNL and INL within 0.88LSB and 1.46LSB, respectively. The ADC shows a maximum SNDR of 61.0dB and a maximum SFDR of 74.9dB at 100MS/s, respectively. The ADC with an active die area of $0.43mm^2$ consumes 29.8mW at 100MS/s and a 1.1V supply.