• Title/Summary/Keyword: cascaded converter

Search Result 125, Processing Time 0.024 seconds

Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter (Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발)

  • Kim, Dong-Hee;Lee, Hee-Seo;Lee, Young-Dal;Lee, Eun-Ju;Lee, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

Unification of Buck-boost and Flyback Converter for Driving Cascaded H-bridge Multilevel Inverter with Single Independent DC Voltage Source

  • Kim, Seong-Hye;Kim, Han-Tae;Park, Jin-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.190-196
    • /
    • 2013
  • It presents a unification of buck-boost and flyback converter for driving a cascaded H-bridge multilevel inverter with a single independent DC voltage source. Cascaded H-bridge multilevel inverter is useful to make many output voltage levels for sinusoidal waveform by combining two or more H-bridge modules. However, each H-bridge module needs an independent DC voltage source to generate multi levels in an output voltage. This topological characteristic brings a demerit of increasing the number of independent DC voltage sources when it needs to increase the number of output voltage levels. To solve this problem, we propose a converter combining a buck-boost converter with a flyback converter. The proposed converter provides independent DC voltage sources at back-end two H-bridge modules. After analyzing theoretical operation of the circuit topology, the validity of the proposed approach is verified by computer-aided simulations using PSIM and experiments.

A Novel Modulation Scheme and a DC-Link Voltage Balancing Control Strategy for T-Type H-Bridge Cascaded Multilevel Converters

  • Wang, Yue;Hu, Yaowei;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2099-2108
    • /
    • 2016
  • The cascaded multilevel converter is widely adopted to medium/high voltage and high power electronic applications due to the small harmonic components of the output voltage and the facilitation of modularity. In this paper, the operation principle of a T-type H-bridge topology is investigated in detail, and a carrier phase shifted pulse width modulation (CPS-PWM) based control method is proposed for this topology. Taking a virtual five-level waveform achieved by a unipolar double frequency CPS-PWM as the output object, PWM signals of the T-type H-bridge can be obtained by reverse derivation according to its switching modes. In addition, a control method for the T-type H-bridge based cascaded multilevel converter is introduced. Then a single-phase T-type H-bridge cascaded multilevel static var generator (SVG) prototype is built, and a repetitive controller based compound current control strategy is designed with the DC-link voltage balancing control scheme analyzed. Finally, simulation and experimental results validate the correctness and feasibility of the proposed modulation method and control strategy for T-type H-bridge based cascaded multilevel converters.

An Efficient Design of Programmable Down Converter for Software Radio (소프트웨어 라디오 수신기의 구현을 위한 효율적인 Programmable Down Converter 설계)

  • Gwak, Seung-Hyeon;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.87-96
    • /
    • 2002
  • This paper proposes an efficient decimation filter structure in programmable down converter for software radio. The decimation filter consists of the cascaded integrator-comb(CIC) filter, a compensation filter for CIC, cascaded comb and modified halfband filters, and programmable FIR filter. Since the compensation filter is used in CIC, the passband drooping is compensated and stopband attenuation is improved. Therefor the more decimation can be implemented in CIC filter. The compensation filter in CIC reduced the computational complexity of other decimation filters and the coefficients of PFIR, thereby achieving a significant hardware reduction over existing approaches. We can reduce the multiply operator by 20% in hardware and operation by 50% as compared with PDC of Harris.

Low-Cost High-Efficiency Two-Stage Cascaded Converter of Step-Down Buck and Tapped-Inductor Boost for Photovoltaic Micro-Inverters (태양광 마이크로 인버터를 위한 탭인덕터 부스트 및 강압형 컨버터 캐스케이드 타입 저가형 고효율 전력변환기)

  • Jang, Jong-Ho;Shin, Jong-Hyun;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • This paper proposes a two-stage step-down buck and a tapped-inductor boost cascaded converter for high efficiency photovoltaic micro-inverter applications. The proposed inverter is a new structure to inject a rectified sinusoidal current into a low-frequency switching inverter for single-phase grid with unity power factor. To build a rectified-waveform of the output current. the converter employs both of a high efficiency step-up and a step-down converter in cascade. In step-down mode, tapped inductor(TI) boost converter stops and the buck converter operates alone. In boost mode, the TI converter operates with the halt of buck operation. The converter provides a rectified current to low frequency inverter, then the inverter converts the current into a unity power-factor sinusoidal waveform. By applying a TI, the converter can decrease the turn-on ratios of the main switch in TI boost converter even with an extreme step-up operation. The performance validation of the proposed design is confirmed by an experimental results of a 120W hardware prototype.

Cascaded H-bridge Multilevel Inverter employing Front-end Flyback Converter with Single Independent DC Voltage Source

  • Kim, Ki-Du;Bae, Gyou-Tak;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.197-201
    • /
    • 2013
  • Cascaded H-bridge multilevel inverter requires independent DC voltage sources to produce multi output voltage levels. When it needs to generate more levels in the output voltage wave, the number of independent DC voltage sources usually limits its extension. To solve this problem, we propose a cascaded H-bridge multilevel inverter employing a front-end flyback converter for unifying input DC voltage sources. After theoretical analysis of the proposed circuit, we verify the validity of the proposed inverter using computer-aided simulations and experiments.

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

Transformerless Cascaded AC-DC-AC Converter for Multiphase Propulsion Drive Application

  • Tao, Xing-Hua;Xu, Lie;Song, Yi-Chao;Sun, Min
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.354-359
    • /
    • 2012
  • A transformerless converter suitable for multiphase drive application is presented in this paper. The topology employs a cascaded H-bridge rectifier as the interface between the grid and multi inverters which drive the multiphase motor. Compared with the conventional structure, the new topology eliminates the input transformer and also has the advantages such as four quadrant operation, simple configuration, low cost, high efficiency, and so on. The control strategies for the grid-side cascade H-bridge rectifier and the motor-side inverter are studied accordingly. Based on the multi-rotational reference frame, modular control scheme is developed to regulate the multiphase drive system. Simulation results show the proper operation of the proposed topology and the corresponding control strategy.

Cascaded Boost Multilevel Converter for Distributed Generation Systems

  • Kim, Ki-Mok;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.70-71
    • /
    • 2017
  • This paper presents a new cascaded boost multilevel converter topology for distributed generation (DG) systems. Most of DG systems, such as photovoltaic (PV), wind turbine and fuel cells, normally require the complex structure power converters, which makes the system expensive, complex and hard to control. However, the proposed converter topology can generate a much higher output voltage just by using the standard low-voltage switch devices and low voltage DC-sources in a simplified structure, also enhancing the reliability of the switch devices. Simulation and experimental results with a 1.2kW system are presented to validate the proposed topology and control method.

  • PDF

Improving the Solution Range in Selective Harmonic Mitigation Pulse Width Modulation Technique for Cascaded Multilevel Converters

  • Najjar, Mohammad;Iman-Eini, Hossein;Moeini, Amirhossein;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1186-1194
    • /
    • 2017
  • This paper proposes an improved low frequency Selective Harmonic Mitigation-PWM (SHM-PWM) technique. The proposed method mitigates the low order harmonics of the output voltage up to the $50^{th}$ harmonic well and satisfies the grid codes EN 50160 and CIGRE-WG 36-05. Using a modified criterion for the switching angles, the range of the modulation index for non-linear SHM equations is improved, without increasing the switching frequency of the CHB converter. Due to the low switching frequency of the CHB converter, mitigating the harmonics of the converter up to the $50^{th}$ order and finding a wider modulation index range, the size and cost of the passive filters can be significantly reduced with the proposed technique. Therefore, the proposed technique is more efficient than the conventional SHM-PWM. To verify the effectiveness of the proposed method, a 7-level Cascaded H-bridge (CHB) converter is utilized for the study. Simulation and experimental results confirm the validity of the above claims.