• Title/Summary/Keyword: carrier transport

Search Result 533, Processing Time 0.029 seconds

Active Transport of Anions through Synthesized Polymer Membrane with Pyridine as Fixed Carrier (피리딘 고정전달자를 함유한 합성 고분자막을 통한 음이온의 능동전달)

  • 이용현;한정우박돈희조영일
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.241-247
    • /
    • 1991
  • The Poly (4-vinyipyridine-co-styrene) membrane containing Pyridine as fixed carrier was synthesized and characterized. And the active transport mechanism of Cl- and $CCl_3COO^-$ with changing concentration of $H^+$ and $OH^-$ was investigated. $CCl_3COO^-$ was transported not only by a symport mechanism with $H^+$ transfer but also by an antiport mechanism with $OH^-$transfer, while $Cl^-$ was transported only by a symport mechanism with $H^+$ transfer. Observing the initial flux of anions, salt formation constant between ions and membrane (K), and diffusion coefficient in membrane (D) were calculated as follows: for $Cl^-, \;K=4.60{\times}10^2\;mol^{-1}{\cdot}\textrm{cm}^3, \;D=1.57{\times}10^{-3}{\textrm{cm}^2/h$ and for $CCl_3COO^-, \;K=1.l0{\times}10^4\;mol^{-1}{\cdot}\textrm{cm}^3, \;D=1.14{\times}10^{-4}{\textrm{cm}^2}/h$.

  • PDF

Analytical Formula of the Excess Noise in Homogeneous Semiconductors (균질 반도체의 과잉 잡음에 관한 해석적 식)

  • Park, Chan-Hyeong;Hong, Sung-Min;Min, Hong-Shick;Park, Young-June
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.8-13
    • /
    • 2008
  • Noise in homogeneous extrinsic semiconductor samples is calculated due to distributed diffusion noise sources. As the length of the device shrinks at a fixed bias voltage, the ac-wise short-circuit noise current shows excess noise as well as thermal noise spectra. This excess noise behaves like a full shot noise when the channel length becomes very small compared with the extrinsic Debye length. For the first time, the analytic formula of the excess noise in extrinsic semiconductors from velocity-fluctuation noise sources is given for finite frequencies. This formula shows the interplay between transit time, dielectric relaxation time, and velocity relaxation time in determining the terminal noise current as well as the carrier density fluctuation. As frequency increases, the power spectral density of the excess noise rolls off. This formula sheds light on noise in nanoscale MOSFETs where quasi-ballistic transport plays an important role in carrier transport and noise.

Dynamic CSMA Protocol Based on the Network Status (네트워크 상태에 따른 동적 CSMA 프로토콜)

  • Lee, Wang-Jong;Rhee, Seung-Hyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.70-80
    • /
    • 2008
  • CSMA(Carrier Sense Multiple Access) is a media access control protocol when nodes use a shared channel. To reduce the probability of collision and increase the performance, the station lust checks the state of the channel. In this paper, we study the performance improvement method based on p-persistent strategy. The p-persistent method reduces the chance of collision and improves the efficiency. However, a probability p and the number of station affect the performance. This paper proposes a dynamic CSMA multiple access based on the network status. If the possibility of collision is low, the station increases the probability p to improve the performance. In the opposite case, the station decreases the probability p. Our simulation results show that the proposed scheme outperforms any methods of CSMA multiple access according to the current persistent strategy.

  • PDF

Computer-simulation with Different Types of Bandgap Profiling for Amorphous Silicon Germanium Thin Films Solar Cells

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.320-320
    • /
    • 2014
  • Amorphous silicon alloy (a-Si) solar cells and modules have been receiving a great deal of attention as a low-cost alternate energy source for large-scale terrestrial applications. Key to the achievement of high-efficiency solar cells using the multi-junction approach is the development of high quality, low band-gap materials which can capture the low-energy photons of the solar spectrum. Several cell designs have been reported in the past where grading or buffer layers have been incorporated at the junction interface to reduce carrier recombination near the junction. We have investigated profiling the composition of the a-SiGe alloy throughout the bulk of the intrinsic material so as to have a built-in electrical field in a substantial portion of the intrinsic material. As a result, the band gap mismatch between a-Si:H and $a-Si_{1-x}Ge_x:H$ creates a barrier for carrier transport. Previous reports have proposed a graded band gap structure in the absorber layer not only effectively increases the short wavelength absorption near the p/i interface, but also enhances the hole transport near the i-n interface. Here, we modulated the GeH4 flow rate to control the band gap to be graded from 1.75 eV (a-Si:H) to 1.55 eV ($a-Si_{1-x}Ge_x:H$). The band structure in the absorber layer thus became like a U-shape in which the lowest band gap was located in the middle of the i-layer. Incorporation of this structure in the middle and top cell of the triple-cell configuration is expected to increase the conversion efficiency further.

  • PDF

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film

  • Jin, Mi-Jin;Um, Doo-Seung;Ogbeide, Osarenkhoe;Kim, Chang-Il;Yoo, Jung-Woo;Robinson, J. W. A.
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 2022
  • Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.

Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model

  • Linh Ba Vu;Soo-ho Jung;Jinhee Bae;Jong Min Park;Kyung Tae Kim;Injoon Son;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2024
  • The n-type Bi2-xSbxTe3 compounds have been of great interest due to its potential to achieve a high thermoelectric performance, comparable to that of p-type Bi2-xSbxTe3. However, a comprehensive understanding on the thermoelectric properties remains lacking. Here, we investigate the thermoelectric transport properties and band characteristics of n-type Bi2-xSbxTe3 (x = 0.1 - 1.1) based on experimental and theoretical considerations. We find that the higher power factor at lower Sb content results from the optimized balance between the density of state effective mass and nondegenerate mobility. Additionally, a higher carrier concentration at lower x suppresses bipolar conduction, thereby reducing thermal conductivity at elevated temperatures. Consequently, the highest zT of ~ 0.5 is observed at 450 K for x = 0.1 and, according to the single parabolic band model, it could be further improved by ~70 % through carrier concentration tuning.

Improved Performance of All-Solution-Processed Inverted InP Quantum Dot Light-Emitting Diodes Using Electron Blocking Layer (전자차단층 도입을 통한 전체 용액공정 기반의 역구조 InP 양자점 발광다이오드의 성능 향상)

  • Heejae Roh;Kyoungeun Lee;Yeyun Bae;Jaeyeop Lee;Jeongkyun Roh
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2024
  • Quantum dot light-emitting diodes (QD-LEDs) are emerging as next-generation displays owing to their high color purity, wide color gamut, and solution processability. Enhancing the efficiency of QD-LEDs involves preventing non-radiative recombination mechanisms, such as Auger and interfacial recombination. Generally, ZnO serves as the electron transport layer, which is known for its higher mobility compared to that of organic semiconductors and can lead to excessive electron injection. Some of the injected electrons pass through the quantum dot emissive layer and undergo non-radiative recombination near or within the organic hole transport layer (HTL), resulting in HTL degradation. Therefore, the implementation of electron blocking layers (EBLs) is essential; however, studies on all-solution-processed inverted InP QD-LEDs are limited. In this study, poly(9-vinylcarbazole) (PVK) is introduced as an EBL to mitigate HTL degradation and enhance the emission efficiency of inverted InP QD-LEDs. Using a single-carrier device, PVK was confirmed to effectively inhibit electron overflow into the HTL, even at extremely low thicknesses. The optimization of the PVK thickness also ensured minimal disruption of the hole-injection properties. Consequently, a 1.5-fold increase in the maximum luminance was achieved in the all-solution-processed inverted InP QD-LEDs with the EBL.

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

A Study on the Changes in Korean Ocean Carriers' Financial Ratios and Profitability Before and After the Bankruptcy of the H-Line Carrier (H선사 파산전후 국적외항선사의 재무비율 차이분석과 영향요인 연구)

  • Kim, Myung-Jae;Ahn, Ki-Myung
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.541-549
    • /
    • 2020
  • This study conducts differential analysis on the financial positions of Korean shipping companies before and after the bankruptcy of the H carrier, looking specifically at their financial ratios, profit and loss patterns, and other factors related to their financial operation. Firstly, it was discovered that major measures of financial health, such as average assets per carrier, were not affected by the bankruptcy of the H carrier. However, despite this, most carriers experienced large changes in profits and losses, with total sales and shipping revenues averaging 424.5 billion won and 381.7 billion won respectively before the bankruptcy, but falling by half to 252.1 billion won and 234.6 billion won after the bankruptcy. Additionally, charter revenues and expenses also dropped by more than half. EBIT/sales and pre-tax revenue margins were also heavily affected after the bankruptcy, with both figures averaging 8% and 3% respectively before the bankruptcy, but falling into the negative range at -2% and -8% post-bankruptcy, resulting in significant deterioration in operational profitability. The study concludes that there is an urgent need to establish a global sales network, improve cost structures, and consistently secure stable cargo in order to increase Korean carriers' profitability. Of all financial measures, liquidity and total asset efficiency were identified as the most severely-impacted by the H carrier bankruptcy, thereby requiring the most pressing policy addressing.

Isolation of Phloem Cells and Active Transport of Sucrose by Isolated Phloem and Parenchyma Cells of Streptanthus tortus Suspension Cultures (Streptanthus tortus의 培養細胞로부터 사부 세포의 분리와 분리된 篩部 및 柔組織 細胞에서 설탕의 능동수송)

  • 조봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.1
    • /
    • pp.7-11
    • /
    • 1998
  • Protoplasts were isolated from the parenchyma supension cultured cells of Streptanthus tortus using hydrolytic enzymes, 0.03% cellulase + 0.02% pectinase. Phloem cells and companion protoplasts were isolated from differentiated suspension cultured cells using hydrolytic enzymes, 0.2% macerase + 0.03% cellulase + 0.02% pectinase + 0.025% rohamet PC. Isolated parenchyma -and companion- protoplasts transported glucose into the cells, but not transported sucrose at all. On the other hand, isolated phloem cells transported sucrose into the cells actively, but not transported glucose. These results show for the first time that loading of sucrose into the phloem cells without nucleus was possible without contributing of companion cells and companion cells had not the ability to transport sucrose directly because of lack of sucrose carriers in the membrane. The sucrose transport into the isolated phloem cells depend on metabolic energy.

  • PDF