Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.3.259

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film  

Jin, Mi-Jin (Department of Materials Science & Metallurgy, University of Cambridge)
Um, Doo-Seung (Cambridge Graphene Centre, University of Cambridge)
Ogbeide, Osarenkhoe (Cambridge Graphene Centre, University of Cambridge)
Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
Yoo, Jung-Woo (Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Robinson, J. W. A. (Department of Materials Science & Metallurgy, University of Cambridge)
Publication Information
Advances in nano research / v.13, no.3, 2022 , pp. 259-267 More about this Journal
Abstract
Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.
Keywords
inkjet printing; magneto-conductance; MXenes; $Ti_3C_2T_x$ network; weak anti-localization (WAL); weak localization (WL);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Anasori, B., Lukatskaya, M.R. and Gogotsi, Y. (2017), "2D metal carbides and nitrides (MXenes) for energy storage", Nat. Rev. Mater., 2(2), 1-17. https://doi.org/10.1038/natrevmats.2016.98.   DOI
2 Anasori, B., Shi, C., Moon, E.J., Xie, Y., Voigt, C.A., Kent, P.R.C., May, S.J., Billinge, S.J.L., Barsoum, M.W. and Gogotsi, Y. (2016), "Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers", Nanosc. Horiz., 1(3), 227-234. https://doi.org/10.1039/C5NH00125K.   DOI
3 Cao, Q., Yun, F. F., Sang, L., Xiang, F., Liu, G. and Wang, X. (2017), "Defect introduced paramagnetism and weak localization in two-dimensional metal VSe2", Nanotechnology, 28(47), 475703. https://doi.org/10.1088/1361-6528/aa8f6c.   DOI
4 Stornaiuolo, D., Jouault, B., Di Gennaro, E., Sambri, A., D'Antuono, M., Massarotti, D., Granozio, F.M., Di Capua, R., De Luca, G.M., Pepe, G.P., Tafuri, F. and Salluzzo, M. (2018), "Interplay between spin-orbit coupling and ferromagnetism in magnetotransport properties of a spin-polarized oxide twodimensional electron system", Phys. Rev. B, 98(7), 075409. https://doi.org/10.1103/PhysRevB.98.075409.   DOI
5 Maekawa, S., Fukuyama, H. (1981), "Magnetoresistance in twodimensional disordered systems: Effects of zeeman splitting and spin-orbit scattering", J. Phys. Soc. Jap., 50(8), 2516-2524. https://doi.org/10.1143/JPSJ.50.2516.   DOI
6 Maleski, K., Mochalin, V. N. and Gogotsi, Y. (2017), "Dispersions of two-dimensional titanium carbide mxene in organic solvents", Chem. Mater., 29(4), 1632-1640. https://doi.org/10.1021/acs.chemmater.6b04830.   DOI
7 Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y. and Barsoum, M.W. (2011), "Twodimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., 23 (37), 4248-53. https://doi.org/10.1002/adma.201102306.   DOI
8 Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y. and Barsoum, M.W. (2012), "Two-dimensional transition metal carbides", ACS Nano, 6(2), 1322-1331. https://doi.org/10.1021/nn204153h.   DOI
9 Niu, C., Qiu, G., Wang, Y., Zhang, Z., Si, M., Wu, W. and Ye, P.D. (2020), "Gate-tunable strong spin-orbit interaction in twodimensional tellurium probed by weak antilocalization", Phys. Rev. B, 101(20), 205414. https://doi.org/10.1103/PhysRevB.101.205414.   DOI
10 Datta, S. (1995), Electronic Transport in Mesoscopic Systems, Cambridge University Press, 196-245.
11 Caviglia, A.D., Gabay, M., Gariglio, S., Reyren, N., Cancellieri, C. and Triscone, J.M. (2014), "Tunable rashba spin-orbit interaction at oxide interfaces", Phys. Rev. Lett., 104(12), 126803. https://doi.org/10.1103/PhysRevLett.104.126803.   DOI
12 Dahlqvist, M. and Rosen, J. (2020), "Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases", Nanoscale, 12(2), 785-794. https://doi.org/10.1039/C9NR08675G.   DOI
13 Deysher, G., Shuck, C.E., Hantanasirisakul, K., Frey, N.C., Foucher, A.C., Maleski, K., Sarycheva, A., Shenoy, V.B., Stach, E.A., Anasori, B. and Gogotsi, Y. (2020), "Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals", ACS Nano, 14(1), 204-217. https://doi.org/10.1021/acsnano.9b07708.   DOI
14 Dresselhaus, P.D., Papavassiliou, C.M.A., Wheeler, R.G. and Sacks, R.N. (1992), "Observation of spin precession in GaAs inversion layers using antilocalization", Phys. Rev. Lett., 68(1), 106-109. https://doi.org/10.1103/PhysRevLett.68.106.   DOI
15 Halim, J., Lukatskaya, M.R., Cook, K.M., Lu, J., Smith, C.R., Naslund, L.A ., May, S.J., Hultman, L. Gogotsi, Y., Eklund, P. and Barsoum, M.W. (2014), "Transparent conductive twodimensional titanium carbide epitaxial thin films", Chem. Mater, 26(7), 2374-2381. https://doi.org/10.1021/cm500641a   DOI
16 Halim, J., Kota, S., Lukatskaya, M.R., Naguib, M., Zhao, M.Q., Moon, E.J., Pitock, J., Nanda, J., May, S.J., Gogotsi, Y. and Barsoum, M.W. (2016), "Synthesis and characterization of 2D molybdenum carbide (MXene)", Adv. Func. Mater., 26(18), 3118-3127. https://doi.org/10.1002/adfm.201505328.   DOI
17 Halim, J., Persson, I., Moon, E.J., Kuhne, P., Darakchieva, V., Persson, P.O.A., Eklund, P., Rosen, J. and Barsoum, M.W. (2019), "Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films", J. Phys. Condens. Matter., 31(16), 165301. https://doi.org/10.1088/1361-648X/ab00a2.   DOI
18 Pinto, D., Anasori, B., Avireddy, H., Shuck, C.E., Hantanasirisakul, K., Deysher, G., Morante, J.R., Porzio, W., Alshareef, H.N. and Gogotsi, Y. (2020), "Synthesis and electrochemical properties of 2D molybdenum vanadium carbides - solid solution MXenes", J. Mater. Chem. A, 8(18), 8957-8968. https://doi.org/10.1039/D0TA01798A.   DOI
19 Salles, P., Pinto, D., Hantanasirisakul, K., Maleski, K., Shuck, C. E. and Gogotsi, Y. (2019), "Electrochromic effect in titanium carbide mxene thin films produced by dip-coating", Adv. Func. Mater., 29(17), 1809223. https://doi.org/10.1002/adfm.201809223.   DOI
20 Sarycheva, A., Polemi, A., Liu, Y., Dandekar, K., Anasori, B. and Gogotsi, Y. (2018), "2D titanium carbide (MXene) for wireless communication", Sci. Adv., 4(9), eaau0920.   DOI
21 Han, M., Shuck, C.E., Rakhmanov, R., Parchment, D., Anasori, B., Koo, C.M., Friedman, G. and Gogotsi, Y. (2020), "Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding", ACS Nano, 14(4), 5008-5016. https://doi.org/10.1021/acsnano.0c01312.   DOI
22 Heikkila, T.T. (2013), The Physics of Nanoelectronics: Tansport and Fluctuation Phenomena at Low Temperatures, Oxford University Press, 296.
23 Liu, H., Bao, L., Zhou, Z., Che, B., Zhang, R., Bian, C., Ma, R., Wu, L., Yang, H., Li, J., Gu, C., Shen, C.M., Du, S. and Gao, H.J. (2019), "Quasi-2D transport and weak antilocalization effect in few-layered VSe2", Nano Lett., 19(7), 4551-4559. https://doi.org/10.1021/acs.nanolett.9b01412.   DOI
24 Urbankowski, P., Anasori, B., Makaryan, T., Er, D., Kota, S., Walsh, P.L., Zhao, M., Shenoy, V.B., Barsoum, M.W. and Gogotsi, Y. (2016), "Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)", Nanoscale, 8(22), 11385-11391. https://doi.org/10.1039/C6NR02253G.   DOI
25 VahidMohammadi, A., Rosen, J. and Gogotsi, Y. (2021), "The world of two-dimensional carbides and nitrides (MXenes)", Science, 372, 1165. https://doi.org/10.1126/science.abf1581.   DOI
26 Xie, Y. and Kent, P.R.C. (2013), "Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers", Phys. Rev. B, 87(23), 235441. https://doi.org/10.1103/PhysRevB.87.235441.   DOI
27 Enyashin, A.N. and Ivanovskii, A.L. (2012), "Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes", Comput. Theor. Chem., 989, 27-32. https://doi.org/10.1016/j.comptc.2012.02.034.   DOI
28 Zha, X.H., Luo, K., Li, Q., Huang, Q., He, J., Wen, X. and Du, S. (2015), "Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes", EPL, 111(2), 26007. https://doi.org/10.1209/0295-5075/111/26007.   DOI
29 Kumar, P., Dogra, A., Bhadauria, P.P., Gupta, A., Maurya, K.K. and Budhani, R.C. (2015), "Enhanced spin-orbit coupling and charge carrier density suppression in LaAl1-xCrxO3/SrTiO3 hetero-interfaces", J. Phys. Condens. Matter., 27(12), 125007. https://doi.org/10.1088/0953-8984/27/12/125007.   DOI
30 Drouhin, H.J., Wegrowe, J.E., Razeghi, M., Lu, H.Z. and Shen, S.Q. (2014), "Weak localization and weak anti-localization in topological insulators", Proc. SPIE, 9167, 91672E. https://doi.org/10.1117/12.2063426.   DOI
31 Fashandi, H., Ivady, V., Eklund, P., Spetz, A.L., Katsnelson, M.I. and Abrikosov, I.A. (2015), "Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transitionmetal carbides", Phys. Rev. B, 92(15), 155142. https://doi.org/10.1103/PhysRevB.92.155142.   DOI
32 Lu, H.Z. and Shen, S.Q. (2015), "Weak antilocalization and localization in disordered and interacting Weyl semimetals", Phys. Rev. B, 92(3), 035203. https://doi.org/10.1103/PhysRevB.92.035203.   DOI
33 Gao, G., Ding, G., Li, J., Yao, K., Wu, M. and Qian, M. (2016), "Monolayer MXenes: Promising half-metals and spin gapless semiconductors", Nanoscale, 8 (16), 8986-8994. https://doi.org/10.1039/C6NR01333C.   DOI
34 Lane, N.J., Barsoum, M.W. and Rondinelli, J.M. (2013), "Correlation effects and spin-orbit interactions in twodimensional hexagonal 5d transition metal carbides, Tan+1Cn (n = 1,2,3)", EPL, 101(5), 57004. https://doi.org/10.1209/0295-5075/101/57004.   DOI
35 Lang, M., He, L., Kou, X., Upadhyaya, P., Fan, Y., Chu, H., Jiang, Y., Bardarson, J.H., Jiang, W., Choi, E.S., Wang, Y., Yeh, N.C. Moore, J., Wang, K.L. (2013), "Competing weak localization and weak antilocalization in ultrathin topological insulators", Nano Lett., 13(1), 48-53. https://doi.org/10.1021/nl303424n.   DOI
36 Lee, M., Williams, J.R., Zhang, S., Frisbie, C.D. and Goldhaber-Gordon, D. (2011), "Electrolyte gate-controlled Kondo effect in SrTiO3", Phys. Rev. Lett., 107(25), 256601. https://doi.org/10.1103/PhysRevLett.107.256601.   DOI
37 Liu, L., Ying, G., Wen, D., Hu, C., Zhang, C. and Wang, C. (2021), "Strengthening effect of Ti3C2Tx in copper matrix composites prepared by molecular-level and high-shear mixings and SPS", Adv. Nano. Res., 11(3), 271-280. https://doi.org/10.12989/anr.2021.11.3.271.   DOI
38 Liu, M., Zhang, J., Chang, C.Z., Zhang, Z., Feng, X., Li, K., He, K., Wang, L.L., Chen, X., Dai, X., Fang, Z., Xue, Q. K., Ma, X. and Wang, Y. (2012), "Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator", Phys. Rev. Lett., 108(3), 036805. https://doi.org/10.1103/PhysRevLett.108.036805.   DOI
39 Liu, W.E., Hankiewicz, E.M. and Culcer, D. (2017), "Weak localization and antilocalization in topological materials with impurity spin-orbit interactions", Materials, 10(7), 807. https://doi.org/10.3390/ma10070807.   DOI
40 Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., Gogotsi, Y. and Barsoum, M.W. (2014), "Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance", Nature, 516(7529), 78-81.   DOI
41 Guo, D., Ming, F., Su, H., Wu, Y., Wahyudi, W., Li, M., Hedhili, M.N., Sheng, G., Li, L.J., Alshareef, H.N., Li, Y. and Lai, Z. (2019), "MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery", Nano Energy, 61, 478-485. https://doi.org/10.1016/j.nanoen.2019.05.011.   DOI
42 Halim, J., Moon, E.J., Eklund, P., Rosen, J., Barsoum, M.W. and Ouisse, T. (2018), "Variable range hopping and thermally activated transport in molybdenum-based MXenes", Phys. Rev. B, 98 (10), 104202. https://doi.org/10.1103/PhysRevB.98.104202.   DOI
43 Hansen, A.E., Bjork, M.T., Fasth, C., Thelander, C. and Samuelson, L. (2005), "Spin relaxation in InAs nanowires studied by tunable weak antilocalization", Phys. Rev. B, 71(20), 205328. https://doi.org/10.1103/PhysRevB.71.205328.   DOI
44 Hikami, S., Larkin, A.I., Nagaoka, Y. (1980), "Spin-orbit interaction and magnetoresistance in the two dimensional random system", Prog. Theor. Phys., 63(2), 707-710. https://doi.org/10.1143/PTP.63.707.   DOI
45 Hu, T., Zhang, H., Wang, J., Li, Z., Hu, M., Tan, J., Hou, P., Li, F. and Wang, X. (2015), "Anisotropic electronic conduction in stacked two-dimensional titanium carbide", Sci. Rep., 5, 16329. https://doi.org/10.1038/srep16329.   DOI
46 Hu, G., Kang, J., Ng, L. W.T., Zhu, X., Howe, R.C.T., Jones, C.G., Hersam, M.C. and Hasan, T. (2018), "Functional inks and printing of two-dimensional materials", Chem. Soc. Rev., 47(9), 3265-3300. https://doi.org/10.1039/C8CS00084K.   DOI
47 Chandrasekaran, A., Mishra, A. and Singh, A.K. (2017), "Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene", Nano Lett., 17(5), 3290-3296. https://doi.org/10.1021/acs.nanolett.7b01035.   DOI
48 Schmidt, H., Yudhistira, I., Chu, L., Castro Neto, A. H., Ozyilmaz, B., Adam, S. and Eda, G. (2016), "Quantum Transport and Observation of Dyakonov-Perel Spin-Orbit Scattering in Monolayer MoS2", Phys. Rev. Lett., 116(4), 046803. https://doi.org/10.1103/PhysRevLett.116.046803.   DOI
49 Akuzum, B., Maleski, K., Anasori, B., Lelyukh, P., Alvarez, N.J., Kumbur, E.C. and Gogotsi, Y. (2018), "Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes", ACS Nano, 12(3), 2685-2694. https://doi.org/10.1021/acsnano.7b08889.   DOI
50 Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B.C., Hultman, L., Kent, P.R.C., Gogotsi, Y. and Barsoum, M.W. (2015), "Twodimensional, ordered, double transition metals carbides (MXenes)", ACS Nano, 9(10), 9507-9516. https://doi.org/10.1021/acsnano.5b03591.   DOI
51 Dey, R., Pramanik, T., Roy, A., Rai, A., Guchhait, S., Sonde, S., Movva, H.C.P., Colombo, L., Register, L.F. and Banerjee, S.K. (2014), "Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi2Te3", Appl. Phys. Lett., 104(22), 223111. https://doi.org/10.1063/1.4881721.   DOI
52 Kumar, H., Frey, N.C., Dong, L., Anasori, B., Gogotsi, Y. and Shenoy, V.B. (2017), "Tunable magnetism and transport properties in nitride MXenes", ACS Nano, 11(8), 7648-7655. https://doi.org/10.1021/acsnano.7b02578.   DOI
53 Hu, G., Yang, L., Yang, Z., Wang, Y., Jin, X., Dai, J., Wu, Q., Liu, S., Zhu, X., Wang, X., Wu, T.C, Howe, R.C.T., Albow-Owen, T., Ng, L.W.T., Yang, Q., Occhipinti, L.G., Woodward, R.I., Kelleher, E.J.R., Sun, Z., Huang, X., Zhang, M., Bain, C.D. and Hasan, T. (2020), "A general ink formulation of 2D crystals for wafer-scale inkjet printing", Sci. Adv., 6, eaba5029. https://doi.org/10.1126/sciadv.aba5029.   DOI
54 Jiang, X., Kuklin, A.V., Baev, A., Ge, Y., A gren, H., Zhang, H. and Prasad, P.N. (2020), "Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications", Phys. Rep., 848, 1-58. https://doi.org/10.1016/j.physrep.2019.12.006.   DOI
55 Khazaei, M., Arai, M., Sasaki, T., Chung, C.Y., Venkataramanan, N.S., Estili, M., Sakka, Y. and Kawazoe, Y. (2013), "Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides", Adv. Func. Mater., 23(17), 2185-2192. https://doi.org/10.1002/adfm.201202502.   DOI
56 Khazaei, M., Ranjbar, A., Arai, M. and Yunoki, S. (2016), "Topological insulators in the ordered double transition metals M'2M''C2 MXenes (M'= Mo, W; M''=Ti, Zr, Hf)", Phys. Rev. B, 94(12), 125152. https://doi.org/10.1103/PhysRevB.94.125152.   DOI
57 Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T. and Yunoki, S. (2017), "Electronic properties and applications of MXenes: A theoretical review", J. Mater. Chem. C, 5(10), 2488-2503. https://doi.org/10.1039/C7TC00140A.   DOI
58 Tikhonenko, F.V., Kozikov, A.A., Savchenko, A.K. and Gorbachev, R.V. (2009), "Transition between electron localization and antilocalization in graphene", Phys. Rev. Lett., 103(22), 226801. https://doi.org/10.1103/PhysRevLett.103.226801.   DOI
59 Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y. and Yoshimura, M. (2016), "One-step solution processing of Ag, Au and Pd@MXene Hybrids for SERS", Sci. Rep., 6, 32049. https://doi.org/10.1038/srep32049.   DOI
60 Schapers, T., Guzenko, V.A., Pala, M.G., Zulicke, U., Governale, M., Knobbe, J. and Hardtdegen, H. (2006), "Suppression of weak antilocalization in GaxIn1-xAs/InP narrow quantum wires", Phys. Rev. B, 74(8), 081301(R). https://doi.org/10.1103/PhysRevB.74.081301.   DOI
61 Weng, H., Ranjbar, A., Liang, Y., Song, Z., Khazaei, M., Yunoki, S., Arai, M., Kawazoe, Y., Fang, Z. and Dai, X. (2015), "Largegap two-dimensional topological insulator in oxygen functionalized MXene", Phys. Rev. B, 92(7), 075436. https://doi.org/10.1103/PhysRevB.92.075436.   DOI
62 Soundiraraju, B. and George, B.K. (2017), "Two-dimensional titanium nitride (ti2n) mxene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate", ACS Nano, 11(9), 8892-8900. https://doi.org/10.1021/acsnano.7b03129.   DOI
63 Shuck, C.E., Han, M., Maleski, K., Hantanasirisakul, K., Kim, S. J., Choi, J., Reil, W.E.B. and Gogotsi, Y. (2019), "Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2TX MXene", ACS Appl. Nano Mater., 2(6), 3368-3376. https://doi.org/10.1021/acsanm.9b00286.   DOI
64 Shuck, C.E., Sarycheva, A., Anayee, M., Levitt, A., Zhu, Y., Uzun, S., Balitskiy, V., Zahorodna, V., Gogotsi, O. and Gogotsi, Y. (2020), "Scalable Synthesis of Ti3C2TX MXene", Adv. Eng. Mater., 22(3). https://doi.org/10.1002/adem.201901241.   DOI
65 Si, C., Zhou, J. and Sun, Z. (2015), "Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals", ACS Appl. Mater. Inter., 7(31), 17510-5. https://doi.org/10.1021/acsami.5b05401.   DOI