DOI QR코드

DOI QR Code

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs

QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조

  • Lee, Yong-Choon (Department of Chemical and Biochemical Engineering, Gachon University) ;
  • Kang, Ik-Joong (Department of Chemical and Biochemical Engineering, Gachon University)
  • 이용춘 (가천대학교 화공생명공학과) ;
  • 강익중 (가천대학교 화공생명공학과)
  • Received : 2016.02.01
  • Accepted : 2016.02.16
  • Published : 2016.04.01

Abstract

A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

본 연구에서는 최근 많은 분야에서 응용되고 있는 형광물질인 양자점을 생명고분자인 키토산과 반응시켜 얻은 나노입자와 금속성 골드 나노입자, 그리고 실버 나노입자로 외부를 코팅하여 나노약물 전달체를 얻을 수 있었다. 키토산은 생체고분자로써 무독성이며 인체적합성 고분자이다. 양자점은 2~10 nm의 크기를 가지는 반도체성 나노입자이다. 양자점은 생명분자나 생명단백질의 비슷한 크기를 갖으며, 그 크기에 따라 알맞은 가시광선 영역의 빛을 발산할 수 있도록 조절 가능하므로, 세포 바이오 마킹, 약물전달체 등에 효과적으로 쓰일 수 있다. 따라서 키토산 나노입자 말단의 아민기와 양자점의 카르복실기가 아미드결합을 형성하여 반응하게 조절하였다. 양자점의 독성을 완화시키기 위해 코팅재료로 사용된 금속성 나노입자 중 골드나노입자는 약 5~10 nm의 크기를 가지고 있고, 인체에 무해하고 음전하를 띄어서 양전하를 띈 고분자와 쉽게 복합체를 형성할 수 있는 장점이 있다. 향균성으로 잘 알려진 실버나노입자는 약 5 nm의 크기를 가지고 있고, 은 나노입자로 코팅을 하면 미생물 감염을 미리 방지 할 수 있는 장점을 가지고 있다. 본 연구에서 만들어진 QDs-키토산-골드 & QDs-키토산-실버 나노쉘의 입자크기는 약 100 nm의 크기를 갖었으며, 목적하는 바 형광특성을 잘 보여주고 있었다. 이러한 입자들은 정전기적 상호작용에 의하여 각각 골드나노입자와 실버나노입자로 코팅되어 나노 약물전달체로 완성할 수 있었다.

Keywords

References

  1. Guang-Hua L. and Chang-Gi C., "CMC and Dynamic Properties of Poly(VA-b-St) Copolymer Micelles for Drug Delivery," Korean J. Chem. Eng., 25(6), 1444-1447(2008). https://doi.org/10.1007/s11814-008-0237-5
  2. Arumukham, M. and Jayasundera, B., "Robust Surface Passivation of Trap Sites in PbS q-dots by Controlling the Thickness of CdS Layers in PbS/CdS Quantum Dot Solar Cells," Solar Energy Materials and Solar Cells, 147, 157-163(2016). https://doi.org/10.1016/j.solmat.2015.12.014
  3. Luo, Q. J., Feng, S. M., Gu, L. H., Liu, J. X. and Tang, X. F., "The Relation of the Energy of Electronic State with the Interior Periodic Potential in Quantum Dot Given by Matrix Method," Physica B: Condensed Matter, 481, 137-143(2016). https://doi.org/10.1016/j.physb.2015.10.037
  4. Amelia, G. and Van, E. S., "Group Velocity Dispersion of CdSSe/ ZnS Core-shell Colloidal Quantum Dots Measured with White Light Interferometry," Optics Communications, 363, 31-36(2016). https://doi.org/10.1016/j.optcom.2015.10.056
  5. Bin, W., Yanfen, C., Yuanya, W., Bo, W., Yingshuai, L. and Zhisong, L., "Aptamer Induced Assembly of Fluorescent Nitrogen-doped Carbon Dots on Gold Nanoparticles for Sensitive Detection of AFB1," Biosensors and Bioelectronics, 78, 23-30(2016). https://doi.org/10.1016/j.bios.2015.11.015
  6. Yanfen, C., Yuanya, W., Bo, W., Bin, W. and Changming, L., "Facile Synthesis of Nitrogen and Sulfur co-doped Carbon Dots and Application for Fe(III) Ions Detection and Cell Imaging," Sensors and Actuators B: Chemical, 223, 689-696(2016). https://doi.org/10.1016/j.snb.2015.09.081
  7. Mrinmoy, G., Ranajit, G., Takahiro, M. and Ajit, K. M., "Polyaniline/ carbon Nanotube/CdS Quantum Dot Composites with Enhanced Optical and Electrical Properties," Applied Surface Science, 364, 176-180(2016). https://doi.org/10.1016/j.apsusc.2015.12.101
  8. Melissa, M., Miao, W., Erin, M. C. and Algar, W. R., "Mind Your P's and Q's: the Coming of Age of Semiconducting Polymer Dots and Semiconductor Quantum Dots in Biological Applications," Current Opinion in Biotechnology, 34, 30-40(2015). https://doi.org/10.1016/j.copbio.2014.11.006
  9. Gwi-Taek, J., "Production of Levulinic Acid from Chitosan by Acidic-Hydrothermal Reaction," Korean Chem. Eng. Res., 52(3), 355-359(2014). https://doi.org/10.9713/kcer.2014.52.3.355
  10. Bakht, R. S., Yan, L., Weiping, J. and Yaping, A., "Preparation and Optimization of Pickering Emulsion Stabilized by Chitosan-tripolyphosphate Nanoparticles for Curcumin Encapsulation," Food Hydrocolloids, 52, 369-377(2016). https://doi.org/10.1016/j.foodhyd.2015.07.015
  11. Kyuri, L., Mi, H. O. and Min, S. L., "Stabilized Calcium Phosphate Nano-aggregates Using a Dopa-chitosan Conjugate for Gene Delivery," International Journal of Pharmaceutics, 445(2), 196-202 (2013). https://doi.org/10.1016/j.ijpharm.2013.01.014
  12. Neeraj, K. G., Priya, D. and Christopher, C., "Site Specific/targeted Delivery of Gemcitabine Through Anisamide Anchored Chitosan/poly Ethylene Glycol Nanoparticles: An Improved Understanding of Lung Cancer Therapeutic Intervention," European Journal of Pharmaceutical Sciences, 47(5), 1006-1014(2012). https://doi.org/10.1016/j.ejps.2012.09.012
  13. Xiaoyang, Z., Jun, Z., Yan, W., Chuanshun, Z. and Jun, Y., "Carboxymethyl Chitosan-poly(amidoamine) Dendrimer Core-shell Nanoparticles for Intracellular Lysozyme Delivery," Carbohydrate Polymers, 98(2), 1326-1334(2013). https://doi.org/10.1016/j.carbpol.2013.08.005
  14. Chao, F., Zhiguo, W., Changqing, J. and Ming, K., "Chitosan/ocarboxymethyl Chitosan Nanoparticles for Efficient and Safe Oral Anticancer Drug Delivery: In vitro and In vivo Evaluation," International Journal of Pharmaceutics, 457(1), 158-167(2013). https://doi.org/10.1016/j.ijpharm.2013.07.079
  15. Bhanu, P. K., Sean, G. S. and Sruthi, R., "Controlling Chitosan-based Encapsulation for Protein and Vaccine Delivery," Biomaterials, 35(14), 4382-4389(2014). https://doi.org/10.1016/j.biomaterials.2014.01.078
  16. Vivek, V. R., Nipun, B., Thangam, R., Subramanian, K. S. and Kannan, S., "pH-responsive Drug Delivery of Chitosan Nanoparticles as Tamoxifen Carriers for Effective Anti-tumor Activity in Breast Cancer Cells," Colloids and Surfaces B: Biointerfaces, 111(1), 117-123(2013). https://doi.org/10.1016/j.colsurfb.2013.05.018
  17. Azza, A. M., Gina, S. E. and Rabab, K., "Chitosan/sulfobutylether-$\beta$-cyclodextrin Nanoparticles as a Potential Approach for Ocular Drug Delivery," International Journal of Pharmaceutics, 413(2), 229-236(2011). https://doi.org/10.1016/j.ijpharm.2011.04.031
  18. Ragelle, H., Riva, R., Vandermeulen, G. and Naeye, B., "Chitosan Nanoparticles for siRNA Delivery: Optimizing Formulation to Increase Stability and Efficiency," Journal of Controlled Release, 176, 54-63(2014). https://doi.org/10.1016/j.jconrel.2013.12.026
  19. Ja-Young, K., Won, I. C. and Young, H. K., "Brain-targeted Delivery of Protein Using Chitosan- and RVG Peptide-conjugated, Pluronicbased Nano-carrier," Biomaterials, 34(4), 1170-1178(2013). https://doi.org/10.1016/j.biomaterials.2012.09.047
  20. Zhen-Hua, L., "Polyamidoamine Dendrimer Conjugated Chitosan Nanoparticles for the Delivery of Methotrexate," Carbohydrate Polymers, 98(1), 1173-1178(2013). https://doi.org/10.1016/j.carbpol.2013.07.021
  21. Chunlan, W., Yahui, H., Xingfei, L. and Ronghui, L., "Study on Quality Components and Sleep-promoting Effect of GABA Maoyecha Tea," Journal of Functional Foods, 7, 180-190(2014). https://doi.org/10.1016/j.jff.2014.02.013
  22. Sarah, B., Sergio, T., Kjell, F. and Tiziana, A., "Endogenous Kynurenic Acid Regulates Extracellular GABA Levels in the Rat Prefrontal Cortex," Neuropharmacology, 82, 11-18(2014). https://doi.org/10.1016/j.neuropharm.2014.02.019
  23. Richard, A. E. Edden, "Current Practice in the use of MEGA-PRESS Spectroscopy for the Detection of GABA," Neuro Image, 86, 43-52(2014).
  24. Mingjun, D., Zhihan, N., Panpan, L. and Yanjun, Z., "Two-phase Synthesis of Hydrophobic Ionic Liquid-capped Gold Nanoparticles and Their Application for Sensing Cholesterol," Electrochimica Acta, 132(20), 465-471(2014). https://doi.org/10.1016/j.electacta.2014.03.142
  25. Jae-Wook, L. and Ik-Joong, K., "Fabrcation of Chitosan-gold Nanoshlls for $\gamma$-aminobutyric Acid Detection as a Surface-enhanced Raman Scattering Substrate," Bull. of Korean Chem. Soc., 36(2), 672-677(2015).
  26. Jae-Wook, L. and Ik-Joong, K., "Fabrcation of Chitosan-gold Nanocomposites Combined with Optical Fiber as Sers Substrates to Detect Dopamine Molecules," Bull. of Korean Chem. Soc., 35(1), 25-29(2014). https://doi.org/10.5012/bkcs.2014.35.1.25
  27. Jae-Wook, L. and Ik-Joong, K., "Chitosan-gold Nano Composite for Dopamine Analysis Using Raman Scattering," Bull. of Korean Chem. Soc., 34(1), 237-242(2013). https://doi.org/10.5012/bkcs.2013.34.1.237