• Title/Summary/Keyword: carotovorum

Search Result 71, Processing Time 0.021 seconds

Essential Oil Prepared from Cymbopogon citrates Exerted an Antimicrobial Activity Against Plant Pathogenic and Medical Microorganisms

  • Jeong, Mi-Ran;Park, Pyeong-Beom;Kim, Dae-Hyuk;Jang, Yong-Suk;Jeong, Han-Sol;Choi, Sang-Hoon
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • Essential oils are mixtures of volatile, lipophilic compounds originating from plants. Some essential oils have useful biological activities including antimicrobial, spasmolytic, antiplasmodial, and insect-repelling activities. In this study, we tested the antimicrobial activity of essential oil prepared from the aromatic plant, Cymbopogon citrates, against three important plant pathogenic and medical microorganisms, Pectobacterium carotovorum, Colletotrichum gloeosporioides, and Aspergillus niger. It effectively inhibited the growth of the bacterium, Pectobacterium carotovorum, in a dose-dependent fashion, and 0.5% of the oil inhibited the growth of bacteria completely. Similarly, the essential oil inhibited the growth of plant pathogenic fungus, Colletotrichum gloeosporioides, and the addition of 1% of essential oil completely inhibited the growth of fungus even after 5 days of culture. Finally, it effectively inhibited the growth of the medically and industrially important fungal species, Aspergillus spp. These results suggest that the essential oil from Cymbopogon citrates may be an environmentally safe alternative to inhibit antimicrobial agents for various uses.

A Synergistic Effect of Chitosan and Lactic Acid Bacteria on the Control of Cruciferous Vegetable Diseases

  • Lin, Yu-Chen;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • Two lactic acid bacteria (LAB) designated J02 and J13 were recovered from fermented vegetables based on their ability to suppress soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish. J02 and J13 were identified as Lactobacillus pentosus and Leuconostoc fallax, respectively. The ability of J02 and J13 to suppress plant diseases is highly dependent on chitosan. LAB alone has no effect and chitosan alone has only a moderate effect on disease reduction. However, J02 or J13 broth cultures plus chitosan display a strong inhibitory effect against plant pathogens and significantly reduces disease severity. LAB strains after being cultured in fish surimi (agricultural waste) and glycerol or sucrose-containing medium and mixed with chitosan, reduce three cruciferous vegetable diseases, including cabbage black spot caused by Alternaria brassicicola, black rot caused by Xanthomonas campestris pv. campestris, and soft rot caused by Pcc. Experimental trials reveal that multiple applications are more effective than a single application. In-vitro assays also reveal the J02/chitosan mixture is antagonistic against Colletotrichum higginsianum, Sclerotium rolfsii, and Fusarium oxysporum f. sp. rapae, indicating a broad-spectrum activity of LAB/chitosan. Overall, our results indicate that a synergistic combination of LAB and chitosan offers a promising approach to biocontrol.

Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

  • Kwak, A Min;Min, Kyeong Jin;Lee, Sang Yeop;Kang, Hee Wan
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding ${\beta}$-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

Isolation and Characterization of Plant Pathogen that Cause Soft Rot Disease in Napa Cabbage (배추무름병 원인균 분리 및 특성 연구)

  • Kwon, Young-Hee;Yoo, Ah-Young;Yu, Jong-Earn;Kang, Ho-Young
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1177-1182
    • /
    • 2009
  • In order to establish in vitro infection model for research of plant pathogen based on tissue softening disease in napa cabbage, eighty independent bacterial strains were isolated from the softened napa cabbage tissues. Eight bacterial isolates were primarily screened with the generation of reproducible tissue softening disease to fresh napa cabbages within 24${\sim}$48 hours after inoculation. Through various microbiological biochemical and morphological examinations, three Gram (-) isolates which harbor independent biological properties were finally chosen, and named as RBI, RB2 and RB6. Collective results obtained from API 20E test and analyses of VITEK 2 COMPACT and nucleotide sequences of 165 rRNA of each isolate proposed that isolates RBI and RB2 are close to the Erwinia carotovora subsp. odorifera, and RB6 is close to the Erwinia carotovora subsp. carotovora. These isolates grew optimally at $30^{\circ}C$ with neutral pH culture condition. The isolates caused softening tissue disease with dose-dependent manner regardless of pre-surface damages of napa cabbage. Minimum dose to cause soft rot disease for RBI, RB2 or RB6 were $8.0{\times}10^8$ CFU/mt $10^9$ CFU/ml or $4.7{\times}10^6$ CFU/ml respectively. These isolates caused tissue softening disease to eggplant, paprika and napa cabbage out of 14 different tested vegetables, indicating that these isolates damages specific plant tissues. The bacterial isolates obtained in this research and in vitro plant infection model will be adapted in the understanding of the mechanism of pathogenesis by plant pathogen.

Selection of a Susceptible Line (Susceptible to Pectobacterium 1, Atstp1) to Soft-rot Disease in T-DNA Insertion Mutants Pool of Arabidopsis (무름병에 감수성인 애기장대 돌연변이체 Atstp1 선발)

  • Choi, Chang-Hyun;Kim, Min-Gab;Ahn, Il-Pyung;Park, Sang-Ryeol;Bae, Shin-Chul;Hwang, Duk-Ju
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.312-315
    • /
    • 2010
  • Pectobacterium carotovorum subsp. carotovorum (Pcc) causes soft rot disease in various plants. Although many studies about Pcc have been going on, little is known yet about the defense genes from plants. To identify defense associated genes in response to Pcc, we screened about 20 thousand Arabidopsis T-DNA knock out lines by inoculation with Pcc. We obtained a line (Atspt1) showing more susceptible symptom compared to WT (Col-0) on 1 day after the inoculation of Pcc on leaves of Arabidopsis with toothpicks. In this study, we optimized the system to select resistant and susceptible lines to Pcc from T-DNA inserted pool of Arabidopsis and expect the system and Atspt1 might be used for molecular breeding to produce resistant vegetables against Pcc.

Distribution of Pectobacterium Species Isolated in South Korea and Comparison of Temperature Effects on Pathogenicity

  • Jee, Samnyu;Choi, Jang-Gyu;Lee, Young-Gyu;Kwon, Min;Hwang, Ingyu;Heu, Sunggi
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.346-354
    • /
    • 2020
  • Pectobacterium, which causes soft rot disease, is divided into 18 species based on the current classification. A total of 225 Pectobacterium strains were isolated from 10 main cultivation regions of potato (Solanum tuberosum), napa cabbage (Brassica rapa subsp. pekinensis), and radish (Raphanus sativus) in South Korea; 202 isolates (90%) were from potato, 18 from napa cabbage, and five from radish. Strains were identified using the Biolog test and phylogenetic analysis. The pathogenicity and swimming motility were tested at four different temperatures. Pectolytic activity and plant cell-wall degrading enzyme (PCWDE) activity were evaluated for six species (P. carotovorum subsp. carotovorum, Pcc; P. odoriferum, Pod; P. brasiliense, Pbr; P. versatile, Pve; P. polaris, Ppo; P. parmentieri, Ppa). Pod, Pcc, Pbr, and Pve were the most prevalent species. Although P. atrosepticum is a widespread pathogen in other countries, it was not found here. This is the first report of Ppo, Ppa, and Pve in South Korea. Pectobacterium species showed stronger activity at 28℃ and 32℃ than at 24℃, and showed weak activity at 37℃. Pectolytic activity decreased with increasing temperature. Activity of pectate lyase was not significantly affected by temperature. Activity of protease, cellulase, and polygalacturonase decreased with increasing temperature. The inability of isolated Pectobacterium to soften host tissues at 37℃ may be a consequence of decreased motility and PCWDE activity. These data suggest that future increases in temperature as a result of climate change may affect the population dynamics of Pectobacterium.

Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166

  • Ryu, Choong-Min;Choi, Hye Kyung;Lee, Chi-Ho;Murphy, John F.;Lee, Jung-Kee;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.182-192
    • /
    • 2013
  • Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90-166, in tobacco. Since S. marcescens 90-166 produces at least three QS signals, QS-mediated ISR in strain 90-166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90-166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90-166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90-166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90-166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90-166.

Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on Growth Promotion and Alleviation of Heat and Drought Stresses in Chinese Cabbage

  • Shin, Da Jeong;Yoo, Sung-Je;Hong, Jeum Kyu;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.178-187
    • /
    • 2019
  • Plants are exposed to biotic stresses caused by pathogen attack and complex abiotic stresses including heat and drought by dynamic climate changes. To alleviate these stresses, we investigated two bacterial stains, H26-2 and H30-3 in two cultivars ('Ryeokkwang' and 'Buram-3-ho') of Chinese cabbage in plastic pots in a greenhouse. We evaluated effects of bacterial strains on plant growth-promotion and mitigation of heat and drought stresses; the role of exopolysaccharides as one of bacterial determinants on alleviating stresses; biocontrol activity against soft rot caused by Pectobacterium carotovorum subsp. carotovorum PCC21. Strains H26-2 and H30-3 significantly increased fresh weights compared to a $MgSO_4$ solution; reduced leaf wilting and promoted recovery after re-watering under heat and drought stresses. Chinese cabbages treated with H26-2 and H30-3 increased leaf abscisic acid (ABA) content and reduced stomatal opening after stresses treatments, in addition, these strains stably colonized and maintained their populations in rhizosphere during heat and drought stresses. As well as tested bacterial cells, exopolysaccharides (EPS) of H30-3 could be one of bacterial determinants for alleviation of tested stresses in Chinese cabbages, however, the effects were different to cultivars of Chinese cabbages. In addition to bacterial activity to abiotic stresses, H30-3 could suppress incidence (%) of soft rot in 'Buram-3-ho'. The tested strains were identified as Bacillus aryabhattai H26-2 and B. siamensis H30-3 based on 16S rRNA gene sequence analysis. Taken together, H26-2 and H30-3 could be candidates for both plant growth promotion and mitigation of heat and drought stresses in Chinese cabbage.

Evaluation of Bioassay Methods to Assess Bacterial Soft Rot Resistance in Radish Cultivars (무 품종의 세균성 무름병 저항성 생물검정법 평가)

  • Afroz, Tania;Hur, Onsook;Ro, Nayoung;Lee, Jae-eun;Hwang, Aejin;Kim, Bichsaem;Assefa, Awraris Derbie;Rhee, Ju Hee;Sung, Jung Sook;Lee, Ho-sun;Hahn, Bum-Soo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.609-616
    • /
    • 2021
  • Bacterial soft rot, caused by Pectobacterium carotovorum subsp. carotovorum (Pcc), is one of the destructive diseases of radish (Raphanus sativus) in Asian countries. The objective of this study was to establish an efficient bioassay method for the evaluation of bacterial soft rot resistance in commercial radish cultivars. First, an efficient bioassay method for examining resistance to bacterial soft rot in commercial radish cultivars was investigated. Six commercial radish cultivars were tested under various conditions: two temperatures (25℃ and 30℃), three inoculations methods (drenching, spraying, and root dipping), and two growth stages (two- and four-leaf stages). The results suggested that spraying with 1×106 cfu/ml of bacterial inoculums during the four-leaf stage and incubating at 30℃ could be the most efficient screening method for bacterial soft rot resistance in commercial radish cultivars. Second, we investigated the degree of resistance of 41 commercial radish cultivars to five Pcc isolates, namely KACC 10225, KACC 10343, KACC 10421, KACC 10458, and KACC 13953. KACC 10421 had the strongest susceptibility in terms of moderately resistant disease response to bacterial soft rot. Out of the 41 radish cultivars, 13 were moderately resistant to this pathogen, whereas 28 were susceptible. The moderately resistant radish cultivars in this investigation could serve as resistance donors in the breeding of soft rot resistance or could be used to determine varietal improvement for direct use by breeders, scientists, farmers, researchers, and end customers.