Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.08.2018.0159

Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on Growth Promotion and Alleviation of Heat and Drought Stresses in Chinese Cabbage  

Shin, Da Jeong (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
Yoo, Sung-Je (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Weon, Hang-Yeon (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
Song, Jaekyeong (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
Sang, Mee Kyung (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
Publication Information
The Plant Pathology Journal / v.35, no.2, 2019 , pp. 178-187 More about this Journal
Abstract
Plants are exposed to biotic stresses caused by pathogen attack and complex abiotic stresses including heat and drought by dynamic climate changes. To alleviate these stresses, we investigated two bacterial stains, H26-2 and H30-3 in two cultivars ('Ryeokkwang' and 'Buram-3-ho') of Chinese cabbage in plastic pots in a greenhouse. We evaluated effects of bacterial strains on plant growth-promotion and mitigation of heat and drought stresses; the role of exopolysaccharides as one of bacterial determinants on alleviating stresses; biocontrol activity against soft rot caused by Pectobacterium carotovorum subsp. carotovorum PCC21. Strains H26-2 and H30-3 significantly increased fresh weights compared to a $MgSO_4$ solution; reduced leaf wilting and promoted recovery after re-watering under heat and drought stresses. Chinese cabbages treated with H26-2 and H30-3 increased leaf abscisic acid (ABA) content and reduced stomatal opening after stresses treatments, in addition, these strains stably colonized and maintained their populations in rhizosphere during heat and drought stresses. As well as tested bacterial cells, exopolysaccharides (EPS) of H30-3 could be one of bacterial determinants for alleviation of tested stresses in Chinese cabbages, however, the effects were different to cultivars of Chinese cabbages. In addition to bacterial activity to abiotic stresses, H30-3 could suppress incidence (%) of soft rot in 'Buram-3-ho'. The tested strains were identified as Bacillus aryabhattai H26-2 and B. siamensis H30-3 based on 16S rRNA gene sequence analysis. Taken together, H26-2 and H30-3 could be candidates for both plant growth promotion and mitigation of heat and drought stresses in Chinese cabbage.
Keywords
abiotic stress; exopolysaccharide; soft rot;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alami, Y., Achouak, W., Marol, C. and Heulin, T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ Microbiol. 66:3393-3398.   DOI
2 Barnawal, D., Bharti, N., Maji, D., Chanotiya, C. S. and Kalra, A. 2014. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J. Plant Physiol. 171:884-894.   DOI
3 Santaella, C., Schue, M., Berge, O., Heulin, T. and Achouak, W. 2008. The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ. Microbiol. 10:2150-2163.   DOI
4 Sherameti, I., Tripathi, S., Varma, A. and Oelmuller, R. 2008. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol. Plant-Microbe. Interact. 21:799-807.   DOI
5 Singh, R. P. and Jha, P. N. 2016. The Multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum. L.). PLoS One 11:e0155026.   DOI
6 Tallgren, A. H., Airaksinen, U., Von Weissenberg, R., Ojamo, H., Kuusisto, J. and Leisola, M. 1999. Exopolysaccharide-producing bacteria from sugar beets. Appl. Environ. Microbiol. 65:862-864.   DOI
7 Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kannaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E. and Niinemets, U. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086.   DOI
8 Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703.   DOI
9 Tiwari, S., Prasad, V., Chauhan, P. S. and Lata, C. 2017. Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front. Plant Sci. 8:1510.   DOI
10 Vurukonda, S. S., Vardharajula, S., Shrivastava, M. and Shaik, Z. A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res.184:13-24.   DOI
11 Yang, J., Kloepper, J. W. and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1-4.   DOI
12 Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617.   DOI
13 Zhang, H., Mao, X., Wang, C. and Jing, R. 2010. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5:e16041.   DOI
14 Zhang, J., Jia, W., Yang, J. and Ismail, A. M. 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res. 97:111-119.   DOI
15 Zhu, J.-K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247-273.   DOI
16 Bric, J. M., Bostock, R. M. and Silverstone, S. E. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57:535-538.   DOI
17 Barrs, H. D. and Weatherley, P. E. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci. 15:413-428.   DOI
18 Bashan, Y. and Holguin, G. 1997. Azospirillum-plant relationships: environmental and physiological advances. Can. J. Microbiol. 43:103-121.   DOI
19 Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I. and Davies, W. J. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181:413-423.   DOI
20 Bresson, J., Varoquaux, F., Bontpart, T., Touraine, B. and Vile, D. 2013. The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol. 200:558-569.   DOI
21 Castric, K. F. and Castric, P. A. 1983. Method for rapid detection of cyanogenic bacteria. Appl. Environ. Microbiol. 45:701-702.   DOI
22 Chenu, C. and Robersin, E. B. 1996. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol. Biochem. 28:877-884.   DOI
23 Dimkpa, C., Weinand, T. and Asch, F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32:1682-1694.   DOI
24 Dobra, J., Motyka, V., Dobrev, P., Malbeck, J., Prasil, I. T., Haisel, D., Gaudinova, A., Havlova, M., Gubis, J. and Vankova, R. 2010. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J. Plant Physiol. 167:1360-1370.   DOI
25 Kaushal, M. and Wani, S. P. 2016. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol. 66:35-42.   DOI
26 Ghosh, D., Sen, S. and Mohapatra, S. 2017. Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Ann. Microbiol. 67:655-668.   DOI
27 Jung, S. S., Jeong, H. H. and Kim, K. S. 2000. Effects of uniconazole treatment on the growth and flowering of potted Chrysanthemum indicum L. Korean J. Hortic. Sci. Technol. 18:28-32.
28 Lee, S. H. and Cha, J. S. 2001. Efficient induction of bacterial soft rot using mineral oil. Phytopathology 91:S53-S54.
29 Levene, H. 1960. Robust tests for equality of variances. In: Contributions to prorobability and statistics: Essays in honor of harold hotelling, eds. by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow and H. B. Mann, pp. 278-292. Stanford University Press, Stanford, California, USA.
30 Kang, S.-M., Radhakrishnan, R., Khan, A. L., Kim, M.-J., Park, J.-M., Kim, B.-R., Shin, D.-H. and Lee, I.-J. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84:115-124.   DOI
31 Khandelwal, A. and Sindhu, S. S. 2013. ACC deaminase containing rhizobacteria enhance nodulation and plant growth in clusterbean (Cyamopsis tetragonoloba L.). J. Microbiol. Res. 3:117-123.
32 Kim, C.-G., Lee, S.-M., Jeong, H.-K., Jang, J.-K., Kim, Y.-H. and Lee, C.-K. 2010. Impacts of climate change on Korean agriculture and its counterstrategies. Korea Rural Economic Institute, Seoul, Korea. 305 pp.
33 Sandhya, V., Shaik, Z. A., Grover, M., Reddy, G. and Venkateswarlu, B. 2009. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fert. Soils 46:17-26.   DOI
34 Kim, H.-S., Sang, M. K., Myung, I. S., Chun, S. C. and Kim, K. D. 2009. Characterization of Bacillus luciferensis strain KJ2C12 from pepper root, a biocontrol agent of Phytophthora blight of pepper. Plant Pathol. J. 25:62-69.   DOI
35 Kumar, A., Kumar, A., Devi, S., Patil, S., Payal, C. and Negi, S. 2012. Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res. Sci. Technol. 4:1-5.
36 Milagres, A. M. F., Machuca, A. and Napoleao, D. 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37:1-6.   DOI
37 Penrose, D. M. and Glick, B. R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growthpromoting rhizobacteria. Physiol. Plant. 118:10-15.   DOI
38 Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiology 17:362-370.
39 Sang, M. K. and Kim, K. D. 2012. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113:383-398.   DOI
40 Sang, M. K., Jeong, J.-J., Kim, J. and Kim, K. D. 2018. Growth promotion and root colonization in pepper plants by phosphate-solubilising Chryseobacterium sp. strain ISE14 that suppresses Phytophthora blight. Ann. Appl. Biol. 172:208-223.   DOI