Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.09.2019.0235

Distribution of Pectobacterium Species Isolated in South Korea and Comparison of Temperature Effects on Pathogenicity  

Jee, Samnyu (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Choi, Jang-Gyu (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Lee, Young-Gyu (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Kwon, Min (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Hwang, Ingyu (Department of Agricultural Biotechnology, Seoul National University)
Heu, Sunggi (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
Publication Information
The Plant Pathology Journal / v.36, no.4, 2020 , pp. 346-354 More about this Journal
Abstract
Pectobacterium, which causes soft rot disease, is divided into 18 species based on the current classification. A total of 225 Pectobacterium strains were isolated from 10 main cultivation regions of potato (Solanum tuberosum), napa cabbage (Brassica rapa subsp. pekinensis), and radish (Raphanus sativus) in South Korea; 202 isolates (90%) were from potato, 18 from napa cabbage, and five from radish. Strains were identified using the Biolog test and phylogenetic analysis. The pathogenicity and swimming motility were tested at four different temperatures. Pectolytic activity and plant cell-wall degrading enzyme (PCWDE) activity were evaluated for six species (P. carotovorum subsp. carotovorum, Pcc; P. odoriferum, Pod; P. brasiliense, Pbr; P. versatile, Pve; P. polaris, Ppo; P. parmentieri, Ppa). Pod, Pcc, Pbr, and Pve were the most prevalent species. Although P. atrosepticum is a widespread pathogen in other countries, it was not found here. This is the first report of Ppo, Ppa, and Pve in South Korea. Pectobacterium species showed stronger activity at 28℃ and 32℃ than at 24℃, and showed weak activity at 37℃. Pectolytic activity decreased with increasing temperature. Activity of pectate lyase was not significantly affected by temperature. Activity of protease, cellulase, and polygalacturonase decreased with increasing temperature. The inability of isolated Pectobacterium to soften host tissues at 37℃ may be a consequence of decreased motility and PCWDE activity. These data suggest that future increases in temperature as a result of climate change may affect the population dynamics of Pectobacterium.
Keywords
pathogenicity; Pectobacterium; plant cell-wall degrading enzymes; soft rot; temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Portier, P., Pedron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C., Laurent, A., Chawki, K., Oulgazi, S., Moumni, M., Andrivon, D., Dutrieux, C., Faure, D., Helias, V. and Barny, M. A. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69:3207-3216.   DOI
2 Roh, E., Lee, S., Lee, Y., Ra, D., Choi, J., Moon, E. and Heu, S. 2009. Diverse Antibacterial activity of Pectobacterium carotovorum subsp.carotovorum isolated in Korea. J. Microbiol. Biotechnol. 19:42-50.   DOI
3 Saha, N. D., Chaudhary, A., Singh, S. D., Singh, D., Walia, S. and Das, T. K. 2015. Plant pathogenic microbial communication affected by elevated temperature in Pectobacterium carotovorum subsp. carotovorum. Curr. Microbiol. 71:585-593.   DOI
4 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
5 Sarfraz, S., Riaz, K., Oulghazi, S., Cigna, J., Sahi, S. T., Khan, S. H. and Faure, D. 2018. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int. J. Syst. Evol. Microbiol. 68:3551-3556.   DOI
6 Seo, S.-T., Koo, J.-H., Hur, J.-H. and Lim, C.-K. 2004. Characterization of Korean Erwinia carotovora strains from potato and Chinese cabbage. Plant. Pathol. J. 20:283-288.   DOI
7 Shirshikov, F. V., Korzhenkov, A. A., Miroshnikov, K. K., Kabanova, A. P., Barannik, A. P., Ignatov, A. N. and Miroshnikov, K. A. 2018. Draft genome sequences of new genomospecies "Candidatus Pectobacterium maceratum" strains, which cause soft rot in plants. Genome Announc. 6:e00260-18.
8 Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629.   DOI
9 Nabhan, S., De Boer, S. H., Maiss, E. and Wydra, K. 2012. Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J. Appl. Microbiol. 113:904-913.   DOI
10 Nabhan, S., De Boer, S. H., Maiss, E. and Wydra, K. 2013. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int. J. Syst. Evol. Microbiol. 63:2520-2525.   DOI
11 Hasegawa, H., Chatterjee, A., Cui, Y. and Chatterjee, A. K. 2005. Elevated temperature enhances virulence of Erwinia carotovora subsp. carotovora strain EC153 to plants and stimulates production of the quorum sensing signal, N-acyl homoserine lactone, and extracellular proteins. Appl. Environ. Microbiol. 71:4655-4663.   DOI
12 Duarte, V., de Boer, S. H., Ward, L. J. and Oliveira, A. M. R. 2004. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol. 96:535-545.   DOI
13 Gardan, L., Gouy, C., Christen, R. and Samson, R. 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 53:381-391.   DOI
14 Golanowska, M., Kielar, J. and Lojkowska, E. 2017. The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland. Eur. J. Plant Pathol. 147:803-817.   DOI
15 Pedron, J., Bertrand, C., Taghouti, G., Portier, P. and Barny, M. A. 2019. Pectobacterium aquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 69:745-751.   DOI
16 No, J.-N., Yoo, M.-S., Park, D. S., Kim, J.-G. and Yoon, B. S. 2009. Development of a new PCR method for detection of Pectobacterium carotovorum. Korean J. Microbiol. 45:306-311 (in Korean).
17 Oulghazi, S., Cigna, J., Lau, Y. Y., Moumni, M., Chan, K. G. and Faure, D. 2019. Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium. Int. J. Syst. Evol. Microbiol. 69:470-475.   DOI
18 Park, D. H., Kim, J. S., Lee, H. G., Hahm, Y. I. and Lim, C. K. 1999. Black leg of potato plants by Erwinia carotovora subsp. atroseptica. Plant Dis. Agric. 5:64-66 (in Korean).
19 Pollumaa, L., Alamae, T. and Mae, A. 2012. Quorum sensing and expression of virulence in pectobacteria. Sensors (Basel) 12:3327-3349.   DOI
20 Waleron, M., Misztak, A., Waleron, M., Franczuk, M., Jonca, J., Wielgomas, B., Mikicinski, A., Popovic, T. and Waleron, K. 2019b. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst. Appl. Microbiol. 42:275-283.   DOI
21 Waleron, M., Misztak, A., Waleron, M., Jonca, J., Furmaniak, M. and Waleron, K. 2019c. Pectobacterium polonicum sp. nov. isolated from vegetable fields. Int. J. Syst. Evol. Microbiol. 69:1751-1759.   DOI
22 Yahiaoui-Zaidi, R., Ladjouzi, R. and Benallaoua, S. 2010. Pathogenic variability within biochemical groups of Pectobacterium carotovorum isolated in Algeria from seed potato tubers. Int. J. Biotechnol. Mol. Biol. Res. 1:001-009.   DOI
23 Khayi, S., Cigna, J., Chong, T. M., Quêtu-Laurent, A., Chan, K. G., Helias, V. and Faure, D. 2016. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 66:5379-5383.   DOI
24 Hauben, L., Moore, E. R., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L. and Swings, J. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 21:384-397.   DOI
25 Helias, V., Hamon, P., Huchet, E., Wolf, J. V. D. and Andrivon, D. 2012. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol. 61:339-345.   DOI
26 Kang, H. W., Kwon, S. W. and Go, S. J. 2003. PCR-based specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum by primers generated from a URP-PCR fingerprinting-derived polymorphic band. Plant Pathol. 52:127-133.   DOI
27 Koh, Y. J., Kim, G. H., Lee, Y. S., Sohn, S. H., Koh, H. S., Kwon, S., Heu, S. and Jung, J. S. 2012. Pectobacterium carotovorum subsp. actinidiae subsp. nov., a new bacterial pathogen causing canker-like symptoms in yellow kiwifruit, Actinidia chinensis. N. Z. J. Crop Hortic. Sci. 40:269-279.   DOI
28 Skelsey, P., Humphris, S. N., Campbell, E. J. and Toth, I. K. 2018. Threat of establishment of non-indigenous potato blackleg and tuber soft rot pathogens in Great Britain under climate change. PLoS ONE 13:e0205711.   DOI
29 Thapa, S. P., Park, H. R., Lim, C. K. and Hur, J. H. 2011. Phylogeny of the Korean Erwinia species as determined by comparison of 16S rDNA sequences. J. Agric. Life Environ. Sci. 23:62-69.
30 Toth, I. K., Bell, K. S., Holeva, M. C. and Birch, P. R. 2003. Soft rot erwiniae: from genes to genomes. Mol. Plant Pathol. 4:17-30.   DOI
31 Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874.   DOI
32 Kwon, Y.-A., Kwon, W.-T., Boo, K.-O. and Choi, Y. 2007. Future projections on subtropical climate regions over South Korea using SRES A1B data. J. Korean Geogr. Soc. 42:835-850 (in Korean).
33 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mc-Gettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.   DOI
34 Waleron, M., Misztak, A., Waleron, M., Franczuk, M., Wielgomas, B. and Waleron, K. 2018. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst. Appl. Microbiol. 41:85-93.   DOI
35 van der Wolf, J. M., de Haan, E. G., Kastelein, P., Krijger, M., de Haas, B. H., Velvis, H., Mendes, O., Kooman-Gersmann, M. and van der Zouwen, P. S. 2017. Virulence of Pectobacterium carotovorum subsp. brasiliense on potato compared with that of other Pectobacterium and Dickeya species under climatic conditions prevailing in the Netherlands. Plant Pathol. 66:571-583.   DOI
36 Waleron, M., Waleron, K. and Lojkowska, E. 2014. Characterization of Pectobacterium carotovorum subsp. odoriferum causing soft rot of stored vegetables. Eur. J. Plant Pathol. 139:457-469.   DOI
37 Waleron, M., Waleron, K., Podhajska, A. J. and Łojkowska, E. 2002. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148:583-595.   DOI
38 Waleron, M., Misztak, A., Jonca, J., Furmaniak, M., Waleron, M. M. and Waleron, K. 2019a. First report of 'Candidatus Pectobacterium maceratum' causing soft rot of potato in Poland. Plant Dis. 103:1409.
39 Brady, C. L., Cleenwerck, I., Venter, S. N., Engelbeen, K., De Vos, P. and Coutinho, T. A. 2010. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int. J. Syst. Evol. Microbiol. 60:2430-2440.   DOI
40 Ahmed, F. A., Larrea-Sarmiento, A., Alvarez, A. M. and Arif, M. 2018. Genome-informed diagnostics for specific and rapid detection of Pectobacterium species using recombinase polymerase amplification coupled with a lateral flow device. Sci. Rep. 8:15972.   DOI
41 Czajkowski, R., Kaczynska, N., Jafra, S., Narajczyk, M. and Lojkowska, E. 2017. Temperature-responsive genetic loci in pectinolytic plant pathogenic Dickeya solani. Plant Pathol. 66:584-594.   DOI
42 Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 56:269-288.   DOI
43 Dees, M. W., Lysoe, E., Rossmann, S., Perminow, J. and Brurberg, M. B. 2017. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 67:5222-5229.   DOI
44 Li, L., Yuan, L., Shi, Y., Xie, X., Chai, A., Wang, Q. and Li, B. 2019. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genomics 20:486.   DOI
45 Lebecka, R., Flis, B. and Murawska, Z. 2018. Comparison of temperature effects on the in vitro growth and disease development in potato tubers inoculated with bacteria Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum and Dickeya solani. J. Phytopathol. 166:654-662.   DOI
46 Lee, D. H., Kim, J.-B., Lim, J.-A., Han, S.-W. and Heu, S. 2014. Genetic diversity of Pectobacterium carotovorum subsp. brasiliensis isolated in Korea. Plant Pathol. J. 30:117-124.   DOI
47 Lee, D. H., Lim, J.-A., Lee, J., Roh, E., Jung, K., Choi, M., Oh, C., Ryu, S., Yun, J. and Heu, S. 2013. Characterization of genes required for the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Pcc21 in Chinese cabbage. Microbiology 159:1487-1496.   DOI