• Title/Summary/Keyword: carbon-based nanomaterials

Search Result 65, Processing Time 0.034 seconds

Carbon nanomaterials in organic photovoltaic cells

  • Kim, Tae-Hoon;Yang, Seung-Jae;Park, Chong-Rae
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.194-206
    • /
    • 2011
  • Carbon nanomaterials in organic photovoltaic (OPV) cells have attracted a great deal of interest for the development of high-efficiency, flexible, and low-cost solar cells. Due to the complicated structure of OPV devices, the electrical properties and dispersion behavior of the carbon nanomaterials should be controlled carefully in order for them to be used as materials in OPV devices. In this paper, a fundamental theory of the electrical properties and dispersion behavior of carbon nanomaterials is reviewed. Based on this review, a state-of-the-art OPV device composed of carbon nanomaterials, along with issues related to such devices, are discussed.

Sensing performances of Semiconducting Carbon Nanomaterials based Gas Sensors Operating at Room Temperature (반도체 탄소 나노재료 기반 상온 동작용 가스센서)

  • Choi, Sun-Woo
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.96-106
    • /
    • 2019
  • Semiconducting carbon-based nanomaterials including single-walled carbon nanotubes(SWCNTs), multi-walled CNT(MWCNTs), graphene(GR), graphene oxide(GO), and reduced graphene oxide(RGO), are very promising sensing materials due to their large surface area, high conductivity, and ability to operate at room temperature. Despite of these advantages, the semiconducting carbon-based nanomaterials intrinsically possess crucial disadvantages compared with semiconducting metal oxide nanomaterials, such as relatively low gas response, irreversible recovery, and poor selectivity. Therefore, in this paper, we introduce a variety of strategies to overcome these disadvantages and investigate principle parameters to improve gas sensing performances.

Performance Enhancement of Ion-Exchange Membranes Using Nanomaterials (나노물질을 이용한 이온교환막의 성능 향상)

  • Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.315-324
    • /
    • 2023
  • Ion-exchange membrane (IEM), is a key component that determines the performance of the electro-membrane processes. In this review, the latest research trends in improving the performance of IEMs used in various electro-membrane processes through modification using carbon-based and metal-based nanomaterials are investigated. The nanomaterials can be introduced into IEMs through various methods. In particular, carbon-based nanomaterials can strengthen their interaction with polymer chains by introducing additional functional groups through chemical modification. Through this, not only can the ion conductivity of IEM be improved, but also the permselectivity can be improved through the sieving effect through the layered structure. Meanwhile, metal-based nanomaterials can improve permselectivity through sieving properties using the difference in hydration radius between target ions and excluded ions within a membrane by using the property of having a layered or porous structure. In addition, depending on the characteristics of the binder used, ion conductivity can be improved through interaction between nanomaterials and binders. From this review, it can be seen that the properties of IEMs can be effectively controlled using carbon-based and metal-based nanomaterials and that research on this is important to greatly improve the performance of the electro-membrane process.

Microscopic analysis of metal matrix composites containing carbon Nanomaterials

  • Daeyoung Kim;Hye Jung Chang;Hyunjoo Choi
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.4.1-4.10
    • /
    • 2020
  • Metallic matrix composites reinforced with carbon nanomaterials continue to attract interest because of their excellent mechanical, thermal, and electrical properties. However, two critical issues have limited their commercialization. Uniform distribution of carbon nanomaterials in metallic matrices is difficult, and the interfaces between the nanomaterials and matrices are weak. Microscope-based analysis was recently used to quantitatively examine these microstructural features and investigate their contributions to the composites' mechanical, thermal, and electrical properties. The impacts of the microstructure on these properties are discussed in the first section of this review. In the second section, the various microscopic techniques used to study the distribution of carbon nanomaterials in metallic matrices and their interfaces are described.

Improve the Transparency of Liquid Crystal Display Using Hybrid Conductive Films Based on Carbon Nanomaterials

  • Shin, Seung Won;Kim, Ki-Beom;Jung, Yong Un;Hur, Sung-Taek;Choi, Suk-Won;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.2-241.2
    • /
    • 2014
  • We present highly transparent liquid crystal displays (LCDs) using hybrid films based on carbon nanomaterials, metal grid, and indium-tin-oxide (ITO) grid. Carbon based nanomaterials are used as transparent electrodes because of high transmittance. Despite of their high transmittance they have relatively high sheet resistance. To solve this problem, we applied grid and made hybrid conductive films based on carbon nanomaterials. Conventional photolithography processes were used to make a grid pattern of metal and ITO. To fabricate transparent conductive films, carbon nanotube (CNT) ink was spin coated on the grid pattern. The transparency of the conductive film was controlled by shape and size of the grid pattern and the thickness of CNT films. The optical transmittance of CNT-based hybrid films is 92.2% and sheet resistance is also reduced to $168{\Omega}/square$. These substrates were used for the fabrication of typical twisted nematic (TN) LCD cells. From the characteristics of LCD devices such as transmittance, operating voltage, voltage holding ratio our devices were comparable to those of pristine ITO substrates. The result shows that the hybrid conductive films based on carbon nanomaterials could be alternative of ITO for the highly transparent LCDs.

  • PDF

Effect of Nanomaterials on the Early Development of Fish Embryos: (1) Carbon and Other Nanomaterials (어류수정란 발달에 미치는 나노독성 연구동향: (1) 탄소계 및 기타 나노물질)

  • Shin, Yu-Jin;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.762-767
    • /
    • 2012
  • The ecotoxicity assessment of nanomaterials (NMs) in the environment is actively conducted throughout the world because of the concerns about their potential risk from usage and release into the environment, as well as their unique physiochemical properties. Ecotoxicity tests for NMs have been conducted using various species and methods; however, in spite of these efforts, the characteristics and toxicity of NMs have not been defined. The fish embryo toxicity test (FET) has been conducted extensively to evaluate the toxicity of NMs as an alternative to a whole-body test in fish. In this study, we collected and analyzed the trends of nanotoxicity on the early development of freshwater fish. The model nanomaterials are carbon NMs ($C_{60},\;C_{70},\;C_{60}$(OH)n and carbon nanotube). Their adverse effects were extensively investigated based on the properties of NMs, test species, and diverse exposure conditions.

Effects of Morphologies of Carbon Nanomaterials on Conductivity of Composites Containing Copper/Carbon Nanomaterial Hybrid Fillers (탄소 나노 물질의 형상에 따른 구리/탄소나노물질 하이브리드 필러의 전도성 향상 거동 분석)

  • Lee, Yeonjoo;Hong, Sung-uk;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.435-440
    • /
    • 2018
  • In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.

Properties of Cement Mortar with Graphene Oxide and Admixture (산화 그래핀과 혼화제를 혼입한 시멘트 모르타르의 특성)

  • Kim, Wan-Su;Park, Chang-Gun;Choi, Sung-Woo;Ryu, Deuk-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.261-262
    • /
    • 2023
  • Nanomaterials are being actively studied in the fields of cement and concrete. However, research on other nanomaterials is insufficient because much of the carbon-based nanomaterials are made up of carbon nanotubes. Therefore, in this study, carbon-based water-soluble graphene oxide was mixed into mortar according to the cement replacement rate to conduct a characteristic evaluation. As a result, as the substitution rate of graphene oxide increased, workability decreased, and there was no effect of enhancing compressive strength. In addition, it was confirmed that the compressive strength decreased due to a large amount of air bubbles when the mixture was mixed for the purpose of improving workability.

  • PDF

Ophthalmic Application of Hydrogel Polymer Containing Carbon Nanomaterials

  • Seok, Jae-Wuk;Geum, Yong-Pil;Shin, Dong-Seok;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.116-121
    • /
    • 2019
  • This experiment is to evaluate the physical properties of the hydrogel lens with the addition of carbon-based nanomaterials, Graphene oxide and Carbon nanotube, and to confirm the improvement of strength. Hyaluronic acid, a hydrophilic substance, was used as an additive by using HEMA (2-hydroxyethyl methacrylate) and ethylene glycol dimethacrylate (EGDMA) as a base monomers. Graphene oxide and two types of Carbon nanotubes(Amide functionalized and Carboxilic acid functionalized) were added 0.1%, 0.3%, 0.5%, respectively, and the physical properties were analyzed by measuring water content, refractive index, breaking strength and SEM image. In the case of the sample added with each carbon nano material, the water content tended to increase for all three materials. The breaking strength tended to increase in Graphene oxide and Carbon nanotube; Carboxilic acid functionalized, but in the case of Carbon nanotube; amide fuctionalized, the breaking strength tended to decrease. However, Carbon nanotube; amide fuctionalized had the highest breaking strength among the three nano materials. Thus, the addition of certain carbon nanomaterials seems to be appropriate for improving the strength of hydrogel lenses.

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.