Browse > Article
http://dx.doi.org/10.1186/s42649-019-0024-2

Microscopic analysis of metal matrix composites containing carbon Nanomaterials  

Daeyoung Kim (School of Advanced Materials Engineering, Kookmin University)
Hye Jung Chang (Advanced Analysis Center, Korea Institute of Science and Technology)
Hyunjoo Choi (School of Advanced Materials Engineering, Kookmin University)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 4.1-4.10 More about this Journal
Abstract
Metallic matrix composites reinforced with carbon nanomaterials continue to attract interest because of their excellent mechanical, thermal, and electrical properties. However, two critical issues have limited their commercialization. Uniform distribution of carbon nanomaterials in metallic matrices is difficult, and the interfaces between the nanomaterials and matrices are weak. Microscope-based analysis was recently used to quantitatively examine these microstructural features and investigate their contributions to the composites' mechanical, thermal, and electrical properties. The impacts of the microstructure on these properties are discussed in the first section of this review. In the second section, the various microscopic techniques used to study the distribution of carbon nanomaterials in metallic matrices and their interfaces are described.
Keywords
Composites; Carbon nanomaterials; Distribution; Interface; Microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.R. Bakshi, V. Singh, K. Balani, D.G. McCartney, S. Seal, A. Agarwal, Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf. Coat. Technol. 202, 5162-5169 (2008)
2 H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae, Reinforcement with carbon nanotubes in aluminum matrix composites. Scr. Mater. 59, 360-363 (2008)
3 H.J. Choi, J.H. Shin, B.H. Min, J.S. Park, D.H. Bae, Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24, 2610-2616 (2009)
4 H.L. Cox, The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72 (1952)
5 R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53, 1159-1163 (2005)
6 C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater. Sci. Eng. A 423, 153-156 (2006)
7 C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Ductility improvement and fatigue studies in mg-CNT nanocomposites. Compos. Sci. Technol. 68, 1432-1439 (2008)
8 J.C. Halpin Affdl, J.L. Kardos, The Halpin-Tsai equations: A review. Polym. Eng. Sci. 16, 344-352 (1976)
9 H. Huang, M. Bush, G.V. Fisher, A numerical study of effect of grain boundaries on elastic and plastic properties in Nanocomposite materials. Key Eng. Mater. 1191, 127-131 (1996)
10 P.M. Hazzledine, Direct versus indirect dispersion hardening. Scripta Metall. Mater. 26, 57-58 (1992)
11 H.N. Jang, J.H. Kim, H. Kang, D.H. Bae, H.J. Chang, H.J. Choi, Reduced graphene oxide as a protection layer for Al. Appl. Surf. Sci. 407, 1-7 (2017)
12 R. Zhong, H. Cong, P. Hou, Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, 848-851 (2003)
13 I.L. Ngo, S.V. Prabhakar Vattikuti, C. Byon, A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers. Int. J. Heat Mass Transf. 114, 727-734 (2017)
14 S.I. Torigoe, T. Horikoshi, A. Ogawa, T. Saito, T. Hamada, Study on evaluation method for PVA Fiber distribution in engineered Cementitious composite. J. Adv. Concr. Technol. 1, 265-268 (2003)
15 K. Liu, L. Lu, F. Wang, W. Liang, Theoretical and experimental study on multiphase model of thermal conductivity of fiber reinforced concrete. Constr. Build. Mater. 148, 465-475 (2017)
16 J.W. Luster, M. Thumann, R. Baumann, Mechanical properties of aluminium alloy 6061-Al2O3 composites. Mater. Sci. Technol. 9, 853-862 (1993)
17 K. Morsi, A.M.K. Esawi, S. Lanka, A. Sayed, M. Taher, Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Compos. Pt. A-Appl. Sci. Manuf. 41, 322-326 (2010)
18 M. Paramsothy, S.F. Hassan, N. Srikanth, M. Gupta, Adding carbon nanotubes and integrating with AA5052 aluminium alloy core to simultaneously enhance stiffness, strength and failure strain of AZ31 magnesium alloy. Compos. Pt. AAppl. Sci. Manuf. 40, 1490-1500 (2009)
19 R. Perez-Bustamante, C.D. Gomez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jimenez, S.A. Perez-Garcia, R. Martinez-Sanchez, Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A 502, 159-163 (2009)
20 E. Orowan, Zur Kristallplastizitat III. Z. Phys. 89, 634-659 (1934)
21 D.Y. Kim, S.J. Nam, A.R. Roh, S.H. Yoo, M. Quevedo-Lopez, H.J. Choi, Effect of interfacial features on the mechanical and electrical properties of rGO/Al composites. J. Mater. Sci. 52, 12001-12012 (2017)
22 J. Phiri, L.S. Johansson, P. Gane, T. Maloney, A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Compos. Pt. B-Eng. 147, 104-113 (2018)
23 K.T. Park, E.J. Lavernia, F.A. Mohamed, High-temperature deformation of 6061 Al. Acta Metall. Mater. 42, 667-678 (1994)
24 H. Izadi, A.P. Gerlich, Distribution and stability of carbon nanotubes during multipass friction stir processing of carbon nanotube/aluminum composites. Carbon 50, 4744-4749 (2012)
25 S.E. Shin, H.J. Choi, J.Y. Hwang, D.H. Bae, Strengthening behavior of carbon/metal nanocomposites. Sci. Rep. 5, 16114 (2015b)
26 F. Scarpa, S. Adhikari, A. Srikantha Phani, Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 065709 (2009)
27 S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae, Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82, 143-151 (2015a)
28 T. Laha, Y. Chen, D. Lahiri, A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos. Pt. A-Appl. Sci. Manuf. 40, 589-594 (2009)
29 M. Kaminski, Sensitivity and randomness in homogenization of periodic fiberreinforced composites via the response function method. Int. J. Solids Struct. 46, 923-927 (2009)
30 A.K. Keshri, K. Balani, S.R. Bakshi, V. Singh, T. Laha, S. Seal, A. Agarwal, Surf. Coat. Technol. 203, 2193-2201 (2009)
31 R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia, J.M. Schoenung, The absence of thermal expansion mismatch strengthening in nanostructured metal-matrix composites. Scr. Mater. 61, 1052-1055 (2009)
32 I. Sridhar, K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44, 1750-1756 (2009)
33 L. Thilly, M. Veron, O. Ludwig, F. Lecouturier, Deformation mechanism in high strength cu/Nb nanocomposites. Mater. Sci. Eng. A 309-310, 510-513 (2001)
34 H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, M. Yoshida, Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting. Mater. Sci. Eng. A 495, 282-287 (2008)
35 Z. Zhang, D.L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54, 1321-1326 (2006)
36 W. Tian, M.W. Fu, L. Qi, X. Chao, J. Liang, Interphase model for FE prediction of the effective thermal conductivity of the composites with imperfect interfaces. Int. J. Heat Mass Transf. 145, 118796 (2019)
37 A.M.K. Esawi, K. Morsi, A. Sayed, A. Abdel Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng. A 508, 167-173 (2009)
38 A.M.K. Esawi, M.A.E. Borady, Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68, 486-492 (2008)
39 I. Alfonso, O. Navarro, J. Vargas, A. Beltran, C. Aguilar, G. Gonzalez, I.A. Figueroa, FEA evaluation of the Al4C3 formation effect on the Young's modulus of carbon nanotube reinforced aluminum matrix composites. Compos. Struct. 127, 420-425 (2015)
40 R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion. Mater. Sci. Eng. 81, 175-187 (1986)
41 T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)
42 W.S. Miller, F.J. Humphreys, Strengthening mechanisms in particulate metal matrix composites. Scripta Metall. Mater. 25, 33-38 (1991)
43 S.R. Bakshi, V. Singh, S. Seal, A. Agarwal, Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf. Coat. Technol. 203, 1544-1554 (2009)
44 H.J. Choi, Mechanical behavior of Al/C60-fullerenes Nanocomposites. Compos. Res. 26, 111-115 (2013)
45 H.J. Choi, J.H. Shin, D.H. Bae, Self-assembled network structures in Al/C60 composites. Carbon 48, 3700-3707 (2010)
46 H.J. Choi, J.H. Shin, D.H. Bae, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Compos. Pt. A-Appl. Sci. Manuf. 43, 1061-1072 (2012)
47 T.H. Courtney, Mechanical Behavior of Materials, 2nd edn. (Waveland Press, Long Grove, 2005)
48 N.A. Fleck, M.F. Ashby, J.W. Hutchinson, The role of geometrically necessary dislocations in giving material strengthening. Scr. Mater. 48, 179-183 (2003)
49 L.H. Dai, Z. Ling, Y.L. Bai, Size-dependent inelastic behavior of particle-reinforced metal-matrix composites. Compos. Sci. Technol. 61, 1057-1063 (2001)
50 A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Pt. A-Appl. Sci. Manuf. 38, 646-650 (2007)
51 D.Y. Kim, H. Kang, D.B. Bae, S.J. Nam, M. Quevedo-Lopez, H.J. Choi, Synthesis of reduced graphene oxide/aluminum nanocomposites via chemicalmechanical processes. J. Compos. Mater. 52, 3015-3025 (2018)
52 H.S. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47, 570-577 (2009)