Browse > Article
http://dx.doi.org/10.5714/CL.2011.12.4.194

Carbon nanomaterials in organic photovoltaic cells  

Kim, Tae-Hoon (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University)
Yang, Seung-Jae (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University)
Park, Chong-Rae (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University)
Publication Information
Carbon letters / v.12, no.4, 2011 , pp. 194-206 More about this Journal
Abstract
Carbon nanomaterials in organic photovoltaic (OPV) cells have attracted a great deal of interest for the development of high-efficiency, flexible, and low-cost solar cells. Due to the complicated structure of OPV devices, the electrical properties and dispersion behavior of the carbon nanomaterials should be controlled carefully in order for them to be used as materials in OPV devices. In this paper, a fundamental theory of the electrical properties and dispersion behavior of carbon nanomaterials is reviewed. Based on this review, a state-of-the-art OPV device composed of carbon nanomaterials, along with issues related to such devices, are discussed.
Keywords
organic photovoltaic; fullerene; carbon nanotubes; graphene; conjugated polymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano, 5, 4380 (2011). http://dx.doi.org/10.1021/nn1030725.   DOI   ScienceOn
2 Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 4, 3169 (2010). http://dx.doi.org/10.1021/nn100551j.   DOI   ScienceOn
3 Liu Q, Liu Z, Zhang X, Zhang N, Yang L, Yin S, Chen Y. Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett, 92, 223303 (2008). http://dx.doi.org/10.1063/1.2938865.   DOI   ScienceOn
4 Hill CM, Zhu Y, Pan S. Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices. ACS Nano, 5, 942 (2011). http://dx.doi.org/10.1021/nn1022457.   DOI   ScienceOn
5 Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater, 20, 3924 (2008). http://dx.doi.org/10.1002/adma.200800366.   DOI   ScienceOn
6 Liu Q, Ren W, Chen ZG, Yin L, Li F, Cong H, Cheng HM. Semiconducting properties of cup-stacked carbon nanotubes. Carbon, 47, 731 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.005.   DOI   ScienceOn
7 Yu D, Park K, Durstock M, Dai L. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J Phys Chem Lett, 2, 1113 (2011). http://dx.doi.org/10.1021/jz200428y.   DOI   ScienceOn
8 Han MY, Ozyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 98, 206805 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.206805.   DOI   ScienceOn
9 Boukhvalov DW, Katsnelson MI. Tuning the gap in bilayer graphene using chemical functionalization: density functional calculations. Phys Rev B, 78, 085413 (2008). http://dx.doi.org/10.1103/PhysRevB.78.085413.   DOI   ScienceOn
10 Avouris P. Graphene: electronic and photonic properties and devices. Nano Lett, 10, 4285 (2010). http://dx.doi.org/10.1021/nl102824h.   DOI   ScienceOn
11 Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nature Nanotechnol, 3, 491 (2008). http://dx.doi.org/10.1038/nnano.2008.199.   DOI   ScienceOn
12 Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P. Tuning the graphene work function by electric field effect. Nano Lett, 9, 3430 (2009). http://dx.doi.org/10.1021/nl901572a.   DOI   ScienceOn
13 Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878.   DOI   ScienceOn
14 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034.   DOI   ScienceOn
15 Muszynski R, Seger B, Kamat PV. Decorating graphene sheets with gold nanoparticles. J Phys Chem C, 112, 5263 (2008). http://dx.doi.org/10.1021/jp800977b.   DOI   ScienceOn
16 Pei S, Zhao J, Du J, Ren W, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48, 4466 (2010). http://dx.doi.org/10.1016/j.carbon.2010.08.006.   DOI   ScienceOn
17 Stylianakis MM, Mikroyannidis JA, Kymakis E. A facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells. Sol Energy Mater Sol Cells, 94, 267 (2010). http://dx.doi.org/10.1016/j.solmat.2009.09.013.   DOI   ScienceOn
18 Yun D, Feng W, Wu H, Li B, Liu X, Yi W, Qiang J, Gao S, Yan S. Controllable functionalization of single-wall carbon nanotubes by in situ polymerization method for organic photovoltaic devices. Synth Met, 158, 977 (2008). http://dx.doi.org/10.1016/j.synthmet.2008.06.025.   DOI   ScienceOn
19 Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP. CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells, 87, 733 (2005). http://dx.doi.org/10.1016/j.solmat.2004.07.047.   DOI   ScienceOn
20 Kymakis E, Kornilios N, Koudoumas E. Carbon nanotube doping of P3HT : PPPCBM photovoltaic devices. J Phys D: Appl Phys, 41, 165110 (2008). http://dx.doi.org/10.1088/0022-3727/41/16/165110.   DOI   ScienceOn
21 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
22 Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58.   DOI   ScienceOn
23 Nagashio K, Nishimura T, Kita K, Toriumi A. Mobility variations in mono- and multi-layer graphene films. Appl Phys Express, 2, 025003 (2009). http://dx.doi.org/10.1143/apex.2.025003.   DOI
24 McCann E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B, 74, 161403 (2006). http://dx.doi.org/10.1103/PhysRevB.74.161403.   DOI   ScienceOn
25 Hatton RA, Blanchard NP, Tan LW, Latini G, Cacialli F, Silva SRP. Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Org Electron, 10, 388 (2009). http://dx.doi.org/10.1016/j.orgel.2008.12.013.   DOI   ScienceOn
26 Nogueira AF, Lomba BS, Soto-Oviedo MA, Correia CRD, Corio P, Furtado CA, Hümmelgen IA. Polymer solar cells using single-wall carbon nanotubes modified with thiophene pedant groups. J Phys Chem C, 111, 18431 (2007). http://dx.doi.org/10.1021/jp074979n.   DOI   ScienceOn
27 Bhattacharyya S, Kymakis E, Amaratunga GAJ. Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem Mater, 16, 4819 (2004). http://dx.doi.org/10.1021/cm0496063.   DOI   ScienceOn
28 Berson S, De Bettignies R, Bailly S, Guillerez S, Jousselme B. Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater, 17, 3363 (2007). http://dx.doi.org/10.1002/adfm.200700438.   DOI   ScienceOn
29 Pradhan B, Batabyal SK, Pal AJ. Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett, 88, 093106 (2006). http://dx.doi.org/10.1063/1.2179372.   DOI   ScienceOn
30 Yang SJ, Park CR. Facile preparation of monodisperse ZnO quantum dots with high quality photoluminescence characteristics. Nanotechnology, 19, 035609 (2008). http://dx.doi.org/10.1088/0957-4484/19/03/035609.   DOI   ScienceOn
31 Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater, 11, 1281 (1999). http://dx.doi.org/10.1002/(sici)1521-4095(199910)11:15<1281::aid-adma1281>3.0.co;2-6.   DOI   ScienceOn
32 Yu B, Hou PX, Li F, Liu B, Liu C, Cheng HM. Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon, 48, 2941 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.032.   DOI   ScienceOn
33 Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 23, 1482 (2011). http://dx.doi.org/10.1002/adma.201003188.   DOI   ScienceOn
34 Hermant MC, Klumperman B, Kyrylyuk AV, Van Der Schoot P, Koning CE. Lowering the percolation threshold of single-walled carbon nanotubes using polystyrene/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) blends. Soft Matter, 5, 878 (2009). http://dx.doi.org/10.1039/b814976c.   DOI   ScienceOn
35 Arnold MS, Stupp SI, Hersam MC. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett, 5, 713 (2005). http://dx.doi.org/10.1021/nl050133o.   DOI   ScienceOn
36 Cordeiro CE, Delfino A, Frederico T. Theoretical study of work function of conducting single-walled carbon nanotubes by a nonrelativistic field theory approach. Carbon, 47, 690 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.004.   DOI   ScienceOn
37 Ago H. Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B, 103, 8116 (1999). http://dx.doi.org/10.1021/jp991659y.   DOI   ScienceOn
38 Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO. Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater, 23, 629 (2011). http://dx.doi.org/10.1002/adma.201003296.   DOI   ScienceOn
39 Kymakis E, Amaratunga GAJ. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett, 80, 112 (2002). http://dx.doi.org/10.1063/1.1428416.   DOI   ScienceOn
40 Landi BJ, Raffaelle RP, Castro SL, Bailey SG. Single-wall carbon nanotube-polymer solar cells. Prog Photovolt Res Appl, 13, 165 (2005). http://dx.doi.org/10.1002/pip.604.   DOI   ScienceOn
41 Yang K, Gu M. The effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym Eng Sci, 49, 2158 (2009). http://dx.doi.org/10.1002/pen.21461.   DOI   ScienceOn
42 Zhao W, Liu YT, Feng QP, Xie XM, Wang XH, Ye XY. Dispersion and noncovalent modification of multiwalled carbon nanotubes by various polystyrene-based polymers. J Appl Polym Sci, 109, 3525 (2008). http://dx.doi.org/10.1002/app.28453.   DOI   ScienceOn
43 Yan Y, Cui J, Potschke P, Voit B. Dispersion of pristine singlewalled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon, 48, 2603 (2010). http://dx.doi.org/10.1016/j.carbon.2010.03.065.   DOI   ScienceOn
44 Zou J, Liu L, Chen H, Khondaker SI, McCullough RD, Huo Q, Zhai L. Dispersion of pristine carbon nanotubes using conjugated block copolymers. Adv Mater, 20, 2055 (2008). http://dx.doi.org/10.1002/adma.200701995.   DOI   ScienceOn
45 Zhang Z, Che Y, Smaldone RA, Xu M, Bunes BR, Moore JS, Zang L. Reversible dispersion and release of carbon nanotubes using foldable oligomers. J Am Chem Soc, 132, 14113 (2010). http://dx.doi.org/10.1021/ja104105n.   DOI   ScienceOn
46 Lovell CS, Wise KE, Kim JW, Lillehei PT, Harrison JS, Park C. Thermodynamic approach to enhanced dispersion and physical properties in a carbon nanotube/polypeptide nanocomposite. Polymer, 50, 1925 (2009). http://dx.doi.org/10.1016/j.polymer.2009.02.016.   DOI   ScienceOn
47 O'Connell MJ, Bachilo SH, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). http://dx.doi.org/10.1126/science.1072631.   DOI   ScienceOn
48 Sun G, Chen G, Liu J, Yang J, Xie J, Liu Z, Li R, Li X. A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer, 50, 5787 (2009). http://dx.doi.org/10.1016/j.polymer.2009.10.007.   DOI   ScienceOn
49 Tusek L, Nitschke M, Werner C, Stana-Kleinschek K, Ribitsch V. Surface characterisation of NH3 plasma treated polyamide 6 foils. Colloids Surf Physicochem Eng Aspects, 195, 81 (2001). http://dx.doi.org/10.1016/s0927-7757(01)00831-7.   DOI   ScienceOn
50 Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 50, 3 (2012). http://dx.doi.org/10.1016/j.carbon.2011.08.011.   DOI   ScienceOn
51 Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett, 3, 1379 (2003). http://dx.doi.org/10.1021/nl034524j.   DOI   ScienceOn
52 Saini V, Li Z, Bourdo S, Dervishi E, Xu Y, Ma X, Kunets VP, Salamo GJ, Viswanathan T, Biris AR, Saini D, Biris AS. Electrical, optical, and morphological properties of p3ht-mwnt nanocomposites prepared by In situ polymerization. J Phys Chem C, 113, 8023 (2009). http://dx.doi.org/10.1021/jp809479a.   DOI   ScienceOn
53 Sui XM, Giordani S, Prato M, Wagner HD. Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers. Appl Phys Lett, 95, 233113 (2009). http://dx.doi.org/10.1063/1.3272012.   DOI   ScienceOn
54 Khabashesku VN, Billups WE, Margrave JL. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res, 35, 1087 (2002). http://dx.doi.org/10.1021/ar020146y.   DOI   ScienceOn
55 Kubota K, Sano M, Masuko T. Microwave irradiation for chemical modification of carbon nanotubes for better dispersion. Jpn J Appl Phys, 44, 465 (2005). http://dx.doi.org/10.1143/jjap.44.465.   DOI
56 Konya Z, Vesselenyi I, Niesz K, Kukovecz A, Demortier A, Fonseca A, Delhalle J, Mekhalif Z, Nagy JB, Koos AA, Osvath Z, Kocsonya A, Biro LP, Kiricsi I. Large scale production of short functionalized carbon nanotubes. Chem Phys Lett, 360, 429 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00900-4.   DOI   ScienceOn
57 Pierard N, Fonseca A, Konya Z, Willems I, Van Tendeloo G, Nagy JB. Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett, 335, 1 (2001). http://dx.doi.org/10.1016/s0009-2614(01)00004-5.   DOI   ScienceOn
58 Lim JK, Yun WS, Yoon MH, Lee SK, Kim CH, Kim K, Kim SK. Selective thiolation of single-walled carbon nanotubes. Synth Met, 139, 521 (2003). http://dx.doi.org/10.1016/s0379-6779(03)00337-0.   DOI   ScienceOn
59 Ma PC, Mo SY, Tang BZ, Kim JK. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 48, 1824 (2010). http://dx.doi.org/10.1016/j.carbon.2010.01.028.   DOI   ScienceOn
60 Yan D, Wang F, Zhao Y, Liu J, Wang J, Zhang L, Park KC, Endo M. Production of a high dispersion of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes using an electrostatic technique. Mater Lett, 63, 171 (2009). http://dx.doi.org/10.1016/j.matlet.2008.09.018.   DOI   ScienceOn
61 Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater, 4, 864 (2005). http://dx.doi.org/10.1038/nmat1500.   DOI   ScienceOn
62 Yang SJ, Choi JY, Chae HK, Cho JH, Nahm KS, Park CR. Preparation and enhanced hydrostability and hydrogen storage capacity of $CNT{\copyright}MOF-5$ hybrid composite. Chem Mater, 21, 1893 (2009). http://dx.doi.org/10.1021/cm803502y.   DOI   ScienceOn
63 Hueso JL, Espinos JP, Caballero A, Cotrino J, Gonzalez-Elipe AR. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon, 45, 89 (2007). http://dx.doi.org/10.1016/j.carbon.2006.07.021.   DOI
64 Savenije TJ, Kroeze JE, Wienk MM, Kroon JM, Warman JM. Mobility and decay kinetics of charge carriers in photoexcited PCBM/PPV blends. Phys Rev B, 69, 155205 (2004). http://dx.doi.org/10.1103/PhysRevB.69.155205.   DOI   ScienceOn
65 Mihailetchi VD, Xie H, De Boer B, Koster LJA, Blom PWM. Charge transport and photocurrent generation in poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells. Adv Funct Mater, 16, 699 (2006). http://dx.doi.org/10.1002/adfm.200500420.   DOI   ScienceOn
66 Moule AJ, Meerholz K. Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Adv Funct Mater, 19, 3028 (2009). http://dx.doi.org/10.1002/adfm.200900775.   DOI   ScienceOn
67 Wei Q, Nishizawa T, Tajima K, Hashimoto K. Self-organized buffer layers in organic solar cells. Adv Mater, 20, 2211 (2008). http://dx.doi.org/10.1002/adma.200792876.   DOI   ScienceOn
68 Cravino A, Sariciftci NS. Organic electronics: molecules as bipolar conductors. Nat Mater, 2, 360 (2003). http://dx.doi.org/10.1038/nmat915.   DOI   ScienceOn
69 Zhao GJ, He YJ, Li Y. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater, 22, 4355 (2010). http://dx.doi.org/10.1002/adma.201001339.   DOI   ScienceOn
70 Cravino A, Sariciftci NS. Double-cable polymers for fullerene based organic optoelectronic applications. J Mater Chem, 12, 1931 (2002). http://dx.doi.org/10.1039/b201558g.   DOI   ScienceOn
71 Rispens MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC. Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM 'plastic' solar cells. Chem Commun, 9, 2116 (2003). http://dx.doi.org/10.1039/B305988J.   DOI
72 Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC. 2.5% efficient organic plastic solar cells. Appl Phys Lett, 78, 841 (2001). http://dx.doi.org/10.1063/1.1345834.   DOI   ScienceOn
73 Brabec CJ, Cravino A, Meissner D, Serdar Sariciftci N, Fromherz T, Rispens MT, Sanchez L, Hummelen JC. Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater, 11, 374 (2001). http://dx.doi.org/10.1002/1616-3028(200110)11:5<374::aidadfm374>3.0.co;2-w.   DOI
74 Ma W, Yang C, Gong X, Lee K, Heeger AJ. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater, 15, 1617 (2005). http://dx.doi.org/10.1002/adfm.200500211.   DOI   ScienceOn
75 Dante M, Peet J, Nguyen TQ. Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J Phys Chem C, 112, 7241 (2008). http://dx.doi.org/10.1021/jp712086q.   DOI   ScienceOn
76 Singh TB, Marjanovic N, Stadler P, Auinger M, Matt GJ, Gunes S, Sariciftci NS, Schwodiauer R, Bauer S. Fabrication and characterization of solution-processed methanofullerene- based organic field-effect transistors. J Appl Phys, 97, 083714 (2005). http://dx.doi.org/10.1063/1.1895466.   DOI   ScienceOn
77 Kim K, Liu J, Namboothiry MAG, Carroll DL. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl Phys Lett, 90, 163511 (2007). http://dx.doi.org/10.1063/1.2730756.   DOI
78 Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, De Boer B, Van Duren JKJ, Janssen RAJ. Compositional dependence of the performance of poly(p-phenylene vinylene):Methanofullerene bulk-heterojunction solar cells. Adv Funct Mater, 15, 795 (2005). http://dx.doi.org/10.1002/adfm.200400345.   DOI   ScienceOn
79 Wobkenberg PH, Bradley DDC, Kronholm D, Hummelen JC, de Leeuw DM, Colle M, Anthopoulos TD. High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives. Synth Met, 158, 468 (2008). http://dx.doi.org/10.1016/j.synthmet.2008.03.016.   DOI   ScienceOn
80 Mihailetchi VD, Van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM. Electron transport in a methanofullerene. Adv Funct Mater, 13, 43 (2003). http://dx.doi.org/10.1002/adfm.200390004.   DOI   ScienceOn
81 Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, Van Hal PA, Janssen RAJ. Efficient methano[70]fullerene/MDMOPPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed, 42, 3371 (2003). http://dx.doi.org/10.1002/anie.200351647.   DOI   ScienceOn
82 Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S. A fullerenesingle wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem, 17, 2406 (2007). http://dx.doi.org/10.1039/b618518e.   DOI   ScienceOn
83 Sirringhaus H, Tessler N, Friend RH. Integrated optoelectronic devices based on conjugated polymers. Science, 280, 1741 (1998). http://dx.doi.org/10.1126/science.280.5370.1741.   DOI   ScienceOn
84 Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL. UItrasmooth, large-area, highuniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater, 21, 3210 (2009). http://dx.doi.org/10.1002/adma.200803551.   DOI   ScienceOn
85 Zou J, Chen H, Chunder A, Yu Y, Huo Q, Zhai L. Preparation of a superhydrophobic and conductive nanocomposite coating from a carbon-nanotube-conjugated block copolymer dispersion. Adv Mater, 20, 3337 (2008). http://dx.doi.org/10.1002/adma.200703094.   DOI   ScienceOn
86 Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett, 69, 4108 (1996). http://dx.doi.org/10.1063/1.117834.   DOI   ScienceOn
87 Yang CM, Liao HH, Horng SF, Meng HF, Tseng SR, Hsu CS. Electron mobility and electroluminescence efficiency of blue conjugated polymers. Synth Met, 158, 25 (2008). http://dx.doi.org/10.1016/j.synthmet.2007.11.006.   DOI   ScienceOn
88 Chirvase D, Chiguvare Z, Knipper M, Parisi J, Dyakonov V, Hummelen JC. Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells. J Appl Phys, 93, 3376 (2003). http://dx.doi.org/10.1063/1.1545162.   DOI   ScienceOn
89 Kooistra FB, Knol J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC. Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett, 9, 551 (2007). http://dx.doi.org/10.1021/ol062666p.   DOI   ScienceOn
90 Kooistra FB, Mihailetchi VD, Popescu LM, Kronholm D, Blom PWM, Hummelen JC. New C84 derivative and its application in a bulk heterojunction solar cell. Chem Mater, 18, 3068 (2006). http://dx.doi.org/10.1021/cm052783z.   DOI   ScienceOn
91 Frankevich E, Maruyama Y, Ogata H. Mobility of charge carriers in vapor-phase grown C60 single crystal. Chem Phys Lett, 214, 39 (1993). http://dx.doi.org/10.1016/0009-2614(93)85452-T.   DOI   ScienceOn
92 Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM. C60 thin film transistors. Appl Phys Lett, 67, 121 (1995). http://dx.doi.org/10.1063/1.115503.   DOI   ScienceOn
93 Beek WJE, Wienk MM, Janssen RAJ. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater, 16, 1112 (2006). http://dx.doi.org/10.1002/adfm.200500573.   DOI   ScienceOn
94 Chang CH, Huang TK, Lin YT, Lin YY, Chen CW, Chu TH, Su WF. Improved charge separation and transport efficiency in poly(3- hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells. J Mater Chem, 18, 2201 (2008). http://dx.doi.org/10.1039/b800071a.   DOI   ScienceOn
95 Jeong HK, Jin MH, So KP, Lim SC, Lee YH. Tailoring the characteristics of graphite oxides by different oxidation times. J Phys D: Appl Phys, 42, 065418 (2009). http://dx.doi.org/10.1088/0022-3727/42/6/065418.   DOI   ScienceOn
96 He Y, Chen HY, Hou J, Li Y. Indene - C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc, 132, 1377 (2010). http://dx.doi.org/10.1021/ja908602j.   DOI   ScienceOn
97 Cravino A. Origin of the open circuit voltage of donor-acceptor solar cells: do polaronic energy levels play a role? Appl Phys Lett, 91, 243502 (2007). http://dx.doi.org/10.1063/1.2817930.   DOI   ScienceOn
98 Geens W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS. Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Org Electron, 3, 105 (2002). http://dx.doi.org/10.1016/s1566-1199(02)00039-3.   DOI   ScienceOn
99 Kymakis E, Servati P, Tzanetakis P, Koudoumas E, Kornilios N, Rompogiannakis I, Franghiadakis Y, Amaratunga GAJ. Effective mobility and photocurrent in carbon nanotube-polymer composite photovoltaic cells. Nanotechnology, 18, 435702 (2007). http://dx.doi.org/10.1088/0957-4484/18/43/435702.   DOI   ScienceOn
100 Mihailetchi VD, Wildeman J, Blom PWM. Space-charge limited photocurrent. Phys Rev Lett, 94, 126602 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.126602.   DOI   ScienceOn
101 Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 107, 1324 (2007). http://dx.doi.org/10.1021/cr050149z.   DOI   ScienceOn
102 Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 21, 1323 (2009). http://dx.doi.org/10.1002/adma.200801283.   DOI   ScienceOn
103 Chen HY, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon, 3, 649 (2009). http://dx.doi.org/10.1038/nphoton.2009.192.   DOI
104 Gregg BA. Excitonic solar cells. J Phys Chem B, 107, 4688 (2003). http://dx.doi.org/10.1021/jp022507x.   DOI   ScienceOn
105 Tang CW. Two-layer organic photovoltaic cell. Appl Phys Lett, 48, 183 (1986). http://dx.doi.org/10.1063/1.96937.   DOI   ScienceOn
106 Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD. Polymer-based solar cells. Mater Today, 10, 28 (2007). http://dx.doi.org/10.1016/s1369-7021(07)70276-6.   DOI
107 Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon, 3, 297 (2009). http://dx.doi.org/10.1038/nphoton.2009.69.   DOI   ScienceOn
108 Ryu MS, Jang J. Effect of solution processed graphene oxide/ nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic. Sol Energy Mater Sol Cells, 95, 2893 (2011). http://dx.doi.org/10.1016/j.solmat.2011.06.008.   DOI   ScienceOn
109 Yin B, Liu Q, Yang L, Wu X, Liu Z, Hua Y, Yin S, Chen Y. Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells. J Nanosci Nanotechnol, 10, 1934 (2010). http://dx.doi.org/10.1166/jnn.2010.2107.   DOI   ScienceOn
110 Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor heterojunctions. Science, 270, 1789 (1995). http://dx.doi.org/10.1126/science.270.5243.1789.   DOI   ScienceOn
111 Coakley KM, Liu Y, McGehee MD, Frindell KL, Stucky GD. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv Funct Mater, 13, 301 (2003). http://dx.doi.org/10.1002/adfm.200304361.   DOI   ScienceOn
112 Durkop T, Getty SA, Cobas E, Fuhrer MS. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 4, 35 (2004). http://dx.doi.org/10.1021/nl034841q.   DOI   ScienceOn
113 Tu KH, Li SS, Li WC, Wang DY, Yang JR, Chen CW. Solution processable nanocarbon platform for polymer solar cells. Energy Environ Sci, 4, 3521 (2011). http://dx.doi.org/10.1039/c1ee01333e.   DOI   ScienceOn
114 Zhu H, Wei J, Wang K, Wu D. Applications of carbon materials in photovoltaic solar cells. Sol Energy Mater Sol Cells, 93, 1461 (2009). http://dx.doi.org/10.1016/j.solmat.2009.04.006.   DOI   ScienceOn
115 Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nature Chem, 1, 403 (2009). http://dx.doi.org/10.1038/nchem.281.   DOI   ScienceOn
116 Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnol, 2, 605 (2007). http://dx.doi.org/10.1038/nnano.2007.300.   DOI   ScienceOn