Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.5.435

Effects of Morphologies of Carbon Nanomaterials on Conductivity of Composites Containing Copper/Carbon Nanomaterial Hybrid Fillers  

Lee, Yeonjoo (Dept. of Advanced Materials Engineering, Kookmin University)
Hong, Sung-uk (Incheon Regional Division, Korea Institute of Industrial Technology)
Choi, Hyunjoo (Dept. of Advanced Materials Engineering, Kookmin University)
Publication Information
Journal of Powder Materials / v.25, no.5, 2018 , pp. 435-440 More about this Journal
Abstract
In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.
Keywords
Ball milling; Conducting additive; Nano carbon; Copper (Cu); Electrical conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Y. Park, S. E. Lee, C. G. Kim and J. H. Han: Compos. Struct., 81 (2007) 401.   DOI
2 J. S. Im, J. G. Kim and Y. S. Lee: Carbon, 47 (2009) 2640.   DOI
3 Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao and Y. Chen: Carbon, 45 (2007) 1614.   DOI
4 D. D. L. Chung: Carbon, 39 (2001) 279.   DOI
5 S. E. Lee, D. Y. Kim, M. Y. Lee, M. K. Lee, E. G. Jeong and Y. S. Lee: Polymer(Korea), 39 (2015) 114.
6 P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth: Science, 265 (1994) 1212.   DOI
7 O. Lourie, D. M. Cox and H. D. Wagner: Phys. Rev. Lett., 81 (1998) 1638.   DOI
8 P. C. Ma, B. Z. Tang and J. K. Kim: Carbon, 46 (2008) 1497.   DOI
9 D. Zhao, T. Liu, J. G. Park, M. Zhang, J. M. Chen and B. Wang: Microelectron. Eng., 96 (2012) 71.   DOI
10 S. G. Shin: Met. Mater. Int., 7 (2001) 605.   DOI
11 M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle and K. Schulte: Adv. Mater., 24 (2012) 3486.   DOI
12 T. Uchida and S. Kumar: J. Appl. Polym. Sci., 98 (2005) 985.   DOI
13 E. Jeong, M. J. Jung, S. H. Cho, S. I. Lee and Y. S. Lee: Colloid Surf., A, 377 (2011) 243.   DOI
14 S. E. Lee, K. Y. Park, C. G. Kim and J. H. Han: Korean Soc. Compos. Mater. 17 (2004) 38.
15 J. M. Kim: J. Korean Weld. Joi. Soc., 25 (2007) 133.
16 M. J. Lee, S. J. Ha, Y. J. Lee, H. N. Jang and H. J. Choi: J. Korean Powder Metall. Inst., 25 (2018) 291.   DOI
17 H. J. Choi, H. H. Shin, B. H. Min, J. S. Park and D. H. Bae: J. Mater. Res. 24 (2009) 2610.   DOI
18 C. Casiraghi, A. C. Ferrari and J. Robertson: Phys. Rev., B, 72 (2005) 085401.   DOI
19 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim: Phys. Rev. Lett., 97 (2006) 187401.   DOI
20 S. Berber and A. Oshiyama: Physica B, 376-377 (2006) 272.   DOI
21 N. Hu, Y. Karube, C. Yan, Z. Masuda and H. Fukunag: Acta Mater., 56 (2008) 2929.   DOI