• 제목/요약/키워드: carbon nanotube (CNT)

검색결과 757건 처리시간 0.03초

Employing GDQ method for exploring undamped vibrational performance of CNT-reinforced porous coupled curved beam

  • Moein A. Ghandehari;Amir R. Masoodi
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.551-565
    • /
    • 2023
  • Coupled porous curved beams, due to their low weight and high flexibility, have many applications in engineering. This study investigates the vibration behavior of coupled porous curved beams in different boundary conditions. The system consists of two curved beams connected by a mid-layer of elastic springs. These beams are made of various materials, such as homogenous steel foam, and composite materials with PMMA (polymethyl methacrylate) and SWCNT (single-walled carbon nanotube) used as the matrix and nanofillers, respectively. To obtain equivalent material properties, the role of mixture (RoM) was employed, followed by the implementation of the porosity function. The system's governing equations were obtained by employing FSDT and Hamilton's law. To investigate thermal vibration, temperature was implemented as a load in the governing equations. The GDQ method was used to solve these equations. To demonstrate the applicability of the GDQ method in calculating the frequencies of the system and the correctness of the developed program, a validation study was conducted. After validation, numerous examples were presented to investigate the behavior of single and coupled curved beams in various material properties and boundary conditions. The results indicate that the frequencies of the curved beams and the system depend highly on the amount of porosity (n) and the distribution pattern. The system frequencies decreased with an increase in the porosity coefficient. The stiffness of the springs had no effect on the first mode frequency but increased frequencies of other modes in a specific range. The frequencies of the system decreased with an increase in environmental temperature.

A Study on Glucose Sensing Measured by Catalyst Containing Multiple Layers of Glucose Oxidase and Gold Nano Rod (글루코스산화효소와 금나노로드 입자의 다층막으로 구성된 촉매를 이용하여 측정한 글루코스 센싱에 대한 연구)

  • Chung, Yong-Jin;Hyun, Kyuhwan;Han, Sang Won;Min, Ji Hong;Chun, Seung-Kyu;Koh, Won-Gun;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제26권2호
    • /
    • pp.179-183
    • /
    • 2015
  • In this study, we propose a catalyst structure including enzyme and metal nano rod for glucose sensing. In the catalyst structure, glucose oxidase (GOx) and gold nano rod (GNR) are alternatingly immobilized on the surface of carbon nanotube (CNT), while poly(ethyleneimine) (PEI) is inserted in between the GOx and GNR to fortify their bonding and give them opposite polarization ($[GOx/GNR]_nPEI/CNT$). To investigate the impact of $[GOx/GNR]_nPEI/CNT$ on glucose sensing, some electrochemical measurements are carried out. Initially, their optimal layer is determined by using cyclic voltammogram and as a result of that, it is proved that $[GOx/GNR/PEI]_2/CNT$ is the best layer. Its glucose sensitivity is $13.315{\mu}AmM^{-1}cm^{-2}$. When it comes to the redox reaction mechanism of flavin adenine dinucleotide (FAD) within $[GOx/GNR/PEI]_2/CNT$, (i) oxygen plays a mediator role in moving electrons and protons generated by glucose oxidation reaction to those for the reduction reaction of FAD and (ii) glucose does not affect the redox reaction of FAD. It is also recognized that the $[GOx/GNR/PEI]_3/CNT$ is limited to the surface reaction and the reaction is quasi-reversible.

그래핀-탄소나노튜브 복합체로 제작한 유연성 투명 전도막의 반복 변형에 대한 내구성 향상

  • Lee, Byeong-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.202-202
    • /
    • 2012
  • 유연성 투명 전도막은 현대 전자산업의 발전에 있어 필수적인 부품소재로서, 가시광선의 투과율이 80% 이상이고 면저항이 $100{\Omega}/sq.$ 전후이며 휘거나 접히고 나아가 두루마리의 형태로도 응용이 가능한 소재를 일컫는다. 이러한 유연성 투명 전도막은 차세대 정보디스플레이 산업 및 유비쿼터스 사회의 중심이 되는 유연성 디스플레이, 터치패널, 발광다이오드, 태양전지 등 매우 다양한 분야에 응용이 기대된다. 이러한 이유로 고 신뢰성 유연성 투명 전도막 개발기술은 차세대 산업에 있어서의 핵심기술로 인식되고 있다. 현재로서는 인듐 주석 산화물(indium tin oxide; ITO) 및 전도성 유기고분자를 사용하여 투명 전도막을 제조하고 있으나, ITO 박막의 경우 인듐 자원의 고갈로 인한 가격상승 및 기판과의 낮은 접착력, 열팽창계수의 차이로 인한 공정상의 문제, 산화물 특유의 취성으로 인한 유연소자로서의 내구성 저하 등의 문제가 제기되고 있다. 전도성 유기고분자의 경우는 낮은 전기전도도와 기계적강도, 유기용매 처리 등의 문제점이 지적되고 있다. 따라서 높은 전기전도도와 투광도 뿐만 아니라 유연성을 지니는 재료의 개발이 요구되고 있는 실정이다. 최근 이러한 재료로서 그래핀(graphene)과 탄소나노튜브(carbon nanotube; CNT)를 중심으로 하는 탄소나노재료가 주목받고 있으며 많은 연구가 활발히 진행되고 있다. 본 연구에서는 열화학기상증착법(thermal vapor deposition; TCVD)으로 합성된 그래핀 및 CNT를 이용하여 탄소나노재료 복합체 기반의 유연성 투명 전도막을 제작하고 그 특성을 평가하였다. 그래핀과 CNT합성을 위한 기판으로는 각각 300 nm 두께의 니켈과 1 nm 철이 증착된 실리콘 웨이퍼를 이용하였으며, 원료가스로는 메탄(CH4)과 아세틸렌(C2H2)등의 탄화수소가스를 이용하였다. 그래핀의 경우 원료가스의 유량, 합성온도, 냉각속도를 변경하여 대면적으로 두께균일도가 높은 그래핀을 합성하였으며, CNT의 경우 합성시간을 변수로 길이 제어합성을 도모하였다. 합성된 그래핀은 식각공정을, CNT는 스프레이 증착공정을 통해 고분자 기판(polyethylene terephthalate; PET) 위에 순차적으로 전사 및 증착하여 탄소나노재료 복합체 기반의 유연성 투명 전도막을 제작하였다. 제작된 탄소나노재료 복합체 기반의 유연성 투명 전도막은 물리적 과부하를 받았을 때 발생할 수 있는 유연성 투명 전도막의 구조적결함에 기인하는 전도성 저하를 보상하는 특징이 있어, 그래핀과 탄소나노튜브 각각으로 제조된 유연성 투명 전도막보다 물리적인 하중이 반복적으로 인가되었을 때 내구성이 향상되는 효과가 있다. 40% 스트레인을 반복적으로 인가하였을 때 그래핀 투명 전도막은 20 사이클 이후에 면저항이 $1-2{\Omega}/sq.$에서 $15{\Omega}/sq.$ 이상으로 급증한 반면 그래핀-CNT 복합체 투명 전도막은 30사이클까지 $1-2{\Omega}/sq.$ 정도의 면저항을 유지하였다.

  • PDF

Fabrication and characterization of polymer-based carbon nanomaterial composites for thermal conductive adhesive application (열전도성 점착제 응용을 위한 고분자 기반 탄소나노소재 복합체 제조 및 특성 평가)

  • Lee, Byeong-Joo;Jo, Sung-Il;Yoon, Eun-Hye;Lee, Ae-Ri;Lee, Woo-Young;Heo, Sung-Gyu;Hwang, Jae-Sung;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • 제53권4호
    • /
    • pp.160-168
    • /
    • 2020
  • A polymer-based carbon nanomaterial composite was fabricated and characterized for the application of a thermal conductive adhesive. Low-dimensional carbon nanomaterials with excellent thermal conductivity such as carbon nanotube (CNT) and graphene were selected as a filler in the composite. Thermal, electrical and adhesive properties of the composite were investigated with respect to the morphology and content of the low-dimensional carbon nanomaterials. As a result, the composite-based adhesive fabricated by the loading of surface-treated MWCNTs of 0.4 wt% showed uniform dispersion, moderate adhesion and effective heat dissipation properties. Finally, it was confirmed through the thermal image analysis of LED module that the temperature reduction of 10℃ was achieved using the fabricated composite adhesive with MWCNT-6A. Expecially, heat dissipation performance of the optimized composite adhesive was evident at the hot spot in the module compared to other samples mixed with graphene or different MWCNT loading ratios.

Effect of Ni Catalyst Thickness on Carbon Nanotube Growth Synthesized by Hot-filament PECVD (Ni 촉매층의 두께가 탄소나노튜브의 성장 형태에 미치는 영향)

  • Kim, Jung-Tae;Park, Yong-Seob;Kim, Hyung-Jin;Choi, Eun-Chang;Hong, Byung-You
    • Journal of the Korean Vacuum Society
    • /
    • 제16권2호
    • /
    • pp.128-133
    • /
    • 2007
  • In this study, we observed the shapes of CNTs formed with the thinckness of catalyst. Catalyst layer was grown by magnetron sputtering method and the thickness of Ni catalyst is the range from 20 to 80 nm. Also, the synthesis of CNT with Ni catalyst thickness was grown by hot-filament PECVD method. And, we investigated the composition of CNTs by using EDS measurement, also observed the shapes of CNTs by using HRTEM and FESEM measurements. In the result, through the TEM analysis, we observed the empty inside of CNTs and the multiwall CNTs, also confirmed the tip of CNT containing Ni. The composition of CNTs are consisted of an element of C, Ti, and Ni. As you shown the growth shapes of CNTs, the pretreatment of the catalyst before te growth of CNTs changed the particle size of the catalysts and grown the CNTs of the different shapes. Consequently, the best vertically alined and well-arranged CNTs exhibited from the substrate deposited at the catalyst thickness of 40 nm.

Study on enhanced electron emission current of carbon nanotube by thermal and HF treatments (열 및 불산 처리를 통한 탄소나노튜브의 전자 방출 특성의 향상 연구)

  • Kim, K.S.;Ryu, J.H.;Lee, C.S.;Lim, H.E.;Ahn, J.S.;Jang, J.;Park, K.C.
    • Journal of the Korean Vacuum Society
    • /
    • 제17권2호
    • /
    • pp.90-95
    • /
    • 2008
  • We studied the effect of thermal annealing and hydrofluoric (HF) acid treatment on the field emission properties of carbon nanotube field emitter arrays (CNT-FEAs) grown with the resist-assisted patterning (RAP) process. After thermal and HF treatment, it was observed that the electron emission properties were remarkably improved. The enhanced electron emission was also found to depend strongly on the sequence of the treatments; the electronemission current density is 656 $mA/cm^2$ with the process of thermal treatment prior to HF treatment while the current density is reduced by 426 $mA/cm^2$ with the reversal processes. This is due to the increased crystalline structure by thermal annealing and then strong fluorine bond was formed by HF treatment.

Preparation of PSf/D2EHPA/CNTs Beads Immobilized with Carbon Nanotubes and Di-(2-ethylhexyl)-phosphoric acid on Polysulfone and Removal Characteristics of Sr(II) (Polysulfone에 Di-(2-ethylhexyl)-phosphoric acid와 Carbon Nanotubes를 고정화한 PSf/D2EHPA/CNTs 비드의 제조와 Sr(II)의 제거 특성)

  • Lee, Min-Gyu;Yun, Jong-Won;Suh, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.854-860
    • /
    • 2017
  • PSf/D2EHPA/CNTs beads were prepared by immobilizing extractant di-(2-ethylhexyl)- phosphoric acid (D2EHPA) and adsorbent carbon nanotubes (CNTs) on polysulfone (PSf), and the adsorption characteristics of Sr(II) on the beads were studied. The morphological characteristics of the prepared PSf/D2EHPA/CNTs beads were observed by scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), and Fourier transform infrared spectrometer (FTIR). The equilibrium time for the removal of Sr(II) by PSf/D2EHPA/CNTs beads was 60 min. The experimental kinetic data followed pseudo-second-order model more than pseudo-first-order kinetics model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was 4.75 mg/g. The removal efficiencies of Sr (II) by PSf/D2EHPA/CNTs beads were improved 2.5 times by adding the adsorbent CNTs more than by using only the extractant D2EHPA.

Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance (이중벽 탄소나노튜브의 정제와 투과도에 따른 전계방출 특성 평가)

  • Ahn, KiTae;Jang, HyunChul;Lyu, SeungChul;Lee, Hansung;Lee, Naesung;Han, Moonsup;Park, Yunsun;Hong, Wanshick;Park, Kyoungwan;Sok, Junghyun
    • Korean Journal of Metals and Materials
    • /
    • 제49권1호
    • /
    • pp.79-84
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at $380^{\circ}C$ for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.

Purification of Single-walled Carbon Nanotubes by HCl Treatment and Analysis of the Field Emission Property (염산에 의한 단중벽 탄소나노튜브 정제와 전자방출 특성 평가)

  • Lyu, SeungChul;Jung, Dami;Ahn, KiTae;Lee, Hansung;Lee, Naesung;Park, Yunsun;Sok, Junghyun
    • Korean Journal of Metals and Materials
    • /
    • 제48권4호
    • /
    • pp.335-341
    • /
    • 2010
  • High-quality single-walled carbon nanotubes (SWCNTs) were synthesized by catalytic decomposition of $C_2H_2$ using Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized SWCNTs typically occurred in the form of a bundle with a diameter of 10~20 nm together with amorphous carbon and catalytic impurities, which were removed by a two-step purification process consisting of oxidation and an acid treatment. The oxidation step, using an $O_2$-Ar mixture at $380^{\circ}C$ for 5 hr in a vertical-type furnace and a $HNO_3$ treatment at $100^{\circ}C$ for one hour, was utilized to remove the amorphous carbon particles. Subsequently, metallic catalysts were removed in HCl at room temperature for 5 hr under magnetic stirring. The SWCNT suspension was prepared by dispersing the purified SWCNTs in an aqueous sodium dodecyl benzene sulfonate solution with horn-type sonication. This was then air-sprayed on glass to fabricate CNT field emitters. The samples had a turn-on field value of 4 V/${\mu}m$ and a current density of 0.67 mA/$cm^2$ at 9 V/${\mu}m$. Increasing the HCl treatment time improved the field emission properties.

A Signal Readout System for CNT Sensor Arrays (CNT 센서 어레이를 위한 신호 검출 시스템)

  • Shin, Young-San;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제48권9호
    • /
    • pp.31-39
    • /
    • 2011
  • In this paper, we propose a signal readout system with small area and low power consumption for CNT sensor arrays. The proposed system consists of signal readout circuitry, a digital controller, and UART I/O. The key components of the signal readout circuitry are 64 transimpedance amplifiers (TIA) and SAR-ADC with 11-bit resolution. The TIA adopts an active input current mirror (AICM) for voltage biasing and current amplification of a sensor. The proposed architecture can reduce area and power without sampling rate degradation because the 64 TIAs share a variable gain amplifier (VGA) which needs large area and high power due to resistive feedback. In addition, the SAR-ADC is designed for low power with modified algorithm where the operation of the lower bits can be skipped according to an input voltage level. The operation of ADC is controlled by a digital controller based on UART protocol. The data of ADC can be monitored on a computer terminal. The signal readout circuitry was designed with 0.13${\mu}m$ CMOS technology. It occupies the area of 0.173 $mm^2$ and consumes 77.06${\mu}W$ at the conversion rate of 640 samples/s. According to measurement, the linearity error is under 5.3% in the input sensing current range of 10nA - 10${\mu}A$. The UART I/O and the digital controller were designed with 0.18${\mu}m$ CMOS technology and their area is 0.251 $mm^2$.