DOI QR코드

DOI QR Code

Purification of Single-walled Carbon Nanotubes by HCl Treatment and Analysis of the Field Emission Property

염산에 의한 단중벽 탄소나노튜브 정제와 전자방출 특성 평가

  • Lyu, SeungChul (Department of Nanotechnology, University of Seoul) ;
  • Jung, Dami (Department of Nano Science & Technology, University of Seoul) ;
  • Ahn, KiTae (Department of Nano Science & Technology, University of Seoul) ;
  • Lee, Hansung (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Lee, Naesung (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Park, Yunsun (Department of Industrial and Management Engineering, Myongi University) ;
  • Sok, Junghyun (Department of Nanotechnology,Department of Nano Science & Technology, University of Seoul)
  • 류승철 (서울시립대학교 나노공학과) ;
  • 정다미 (서울시립대학교 나노과학기술학과) ;
  • 안기태 (서울시립대학교 나노과학기술학과) ;
  • 이한성 (세종대학교 나노신소재공학부) ;
  • 이내성 (세종대학교 나노신소재공학부) ;
  • 박윤선 (명지대학교 산업경영공학과) ;
  • 석중현 (서울시립대학교 나노공학과,나노과학기술학과)
  • Received : 2009.10.29
  • Published : 2010.04.15

Abstract

High-quality single-walled carbon nanotubes (SWCNTs) were synthesized by catalytic decomposition of $C_2H_2$ using Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized SWCNTs typically occurred in the form of a bundle with a diameter of 10~20 nm together with amorphous carbon and catalytic impurities, which were removed by a two-step purification process consisting of oxidation and an acid treatment. The oxidation step, using an $O_2$-Ar mixture at $380^{\circ}C$ for 5 hr in a vertical-type furnace and a $HNO_3$ treatment at $100^{\circ}C$ for one hour, was utilized to remove the amorphous carbon particles. Subsequently, metallic catalysts were removed in HCl at room temperature for 5 hr under magnetic stirring. The SWCNT suspension was prepared by dispersing the purified SWCNTs in an aqueous sodium dodecyl benzene sulfonate solution with horn-type sonication. This was then air-sprayed on glass to fabricate CNT field emitters. The samples had a turn-on field value of 4 V/${\mu}m$ and a current density of 0.67 mA/$cm^2$ at 9 V/${\mu}m$. Increasing the HCl treatment time improved the field emission properties.

Keywords

Acknowledgement

Supported by : 서울시

References

  1. D. H. Kim, Bulletin of KlEEME 13, 29 (2000)
  2. Y. H. Lee, Sae Mulli (The Korean Physical Society) 51, 84 (2005)
  3. Sumio Iijima, Nature 354, 56 (1991) https://doi.org/10.1038/354056a0
  4. Ray H. Baughman, Anvar A. Zakhidov, and Walt A. de Heer, Science 297, 787 (2002) https://doi.org/10.1126/science.1060928
  5. Sora Lee, Won Bin Im, long Hyuk Kang, Duk Young leon, J. Vac. Sci. Technol.B 23, 745 (2005) https://doi.org/10.1116/1.1884120
  6. Yongning Liu, Song Xiao1ong, Zhao Tingkai, Zhu liewu, Michael Hirscher, and Fritz Philipp, Carbon 42, 1852 (2004) https://doi.org/10.1016/j.carbon.2004.01.069
  7. T. Guo, P. Niko1aev, A. Thess, D. T. Colbert, and R. E. Smalley, Chemical Physics Letter 243, 49 (1995) https://doi.org/10.1016/0009-2614(95)00825-O
  8. Yoshiyuki Show and Norihiko Fukuzumi, Diamond & Related Materials 16, 1106 (2007) https://doi.org/10.1016/j.diamond.2006.11.066
  9. B. C. Satishkumar, A. Govindaraj, Rahu1 Sen, and C. N. R. Rao, Chemical Physics Letters 293, 47 (1998) https://doi.org/10.1016/S0009-2614(98)00727-1
  10. Xin Song and Yan Fang, Spectrochimica Acta Part A 67, 1131 (2007) https://doi.org/10.1016/j.saa.2006.09.036
  11. E. Dujardin, T. W. Ebbesen, A. Krishnan, and M. M. J. Treacy, Advanced Materials 10, 611 (1998) https://doi.org/10.1002/(SICI)1521-4095(199805)10:8<611::AID-ADMA611>3.0.CO;2-8
  12. Y. H. Wang, H. W. Shan, R. H. Hauge, M. Pasqua1i, R. E. Smalley, J. Phys. Chem. B 111, 6, 1249 (2007) https://doi.org/10.1021/jp068229+
  13. Y. H. Kim, Y. K. Seo, U. C. Chang, and W. S. Chung, J. Kor. Inst. Met. & Mater. 44, 163 (2006)
  14. J. H. Han, J. H. Park, A. S. Berdinsky, P. S. Alegaokar, J. B. Yoo, H. J. Kim, J. J. Choi, J. W. Nam, and C. K. Lee, Electron Materials Letters 2, 101 (2006)
  15. R. B. Rakhi, K. Sethupathi, and S. Ramaprabhu, Nanoscale Res. Lett. 2, 331 (2007) https://doi.org/10.1007/s11671-007-9067-3
  16. L. Nilsson, o. Groening, C. Emmenegger, H. Kind, and K. Kern, Appl. Phys. Lett. 76, 2071 (2000) https://doi.org/10.1063/1.126258
  17. H. Y. Shin, D. H. Kim, B. K. Ahn, W. S. Choi, W. S. Chung, U. C. Chung, and Y. R. Cho, J. Kor. Inst. Met. & Mater. 42, 508 (2004)
  18. S. H. Ha, N. H. Kwon, P. K. Song, J. H. Chang, Y. R. Choi, Kor. J. Met. Mater. 48, 180 (2010) https://doi.org/10.3365/KJMM.2010.48.02.180
  19. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928) https://doi.org/10.1098/rspa.1928.0091