DOI QR코드

DOI QR Code

Fabrication and characterization of polymer-based carbon nanomaterial composites for thermal conductive adhesive application

열전도성 점착제 응용을 위한 고분자 기반 탄소나노소재 복합체 제조 및 특성 평가

  • Lee, Byeong-Joo (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Yoon, Eun-Hye (Taeyang 3C) ;
  • Lee, Ae-Ri (Taeyang 3C) ;
  • Lee, Woo-Young (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Heo, Sung-Gyu (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Hwang, Jae-Sung (Taeyang 3C) ;
  • Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
  • 이병주 (강원대학교 대학원 신소재공학과) ;
  • 조성일 (강원대학교 대학원 신소재공학과) ;
  • 윤은혜 ((주)태양 3C) ;
  • 이애리 ((주)태양 3C) ;
  • 이우영 (강원대학교 대학원 신소재공학과) ;
  • 허성규 (강원대학교 대학원 신소재공학과) ;
  • 황재성 ((주)태양 3C) ;
  • 정구환 (강원대학교 대학원 신소재공학과)
  • Received : 2020.06.29
  • Accepted : 2020.08.14
  • Published : 2020.08.31

Abstract

A polymer-based carbon nanomaterial composite was fabricated and characterized for the application of a thermal conductive adhesive. Low-dimensional carbon nanomaterials with excellent thermal conductivity such as carbon nanotube (CNT) and graphene were selected as a filler in the composite. Thermal, electrical and adhesive properties of the composite were investigated with respect to the morphology and content of the low-dimensional carbon nanomaterials. As a result, the composite-based adhesive fabricated by the loading of surface-treated MWCNTs of 0.4 wt% showed uniform dispersion, moderate adhesion and effective heat dissipation properties. Finally, it was confirmed through the thermal image analysis of LED module that the temperature reduction of 10℃ was achieved using the fabricated composite adhesive with MWCNT-6A. Expecially, heat dissipation performance of the optimized composite adhesive was evident at the hot spot in the module compared to other samples mixed with graphene or different MWCNT loading ratios.

Keywords

References

  1. A. J. McNamara, Y. Joshi, Z. M. Zhang, Thermal resistance of thermal conductive adhesive anchored carbon nanotubes interface material, Int. J. Therm. Sci., 96 (2015) 221-226. https://doi.org/10.1016/j.ijthermalsci.2015.05.006
  2. K. C. Yung, H. Liem, H. S. Choy, W. K. Lun, Thermal performance of high brightness LED array package on PCB, Int. Commun. Heat Mass Transfer, 37 (2010) 1266-1272. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.023
  3. G. Sui, S. Jana, W. H. Zhong, M. A. Fuqua, C. A. Ulven, Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites, Acta Mater., 56 (2008) 2381-2388. https://doi.org/10.1016/j.actamat.2008.01.034
  4. J. S. Roh, J. S. Ahn, B. J. Kim, H. Y. Jeon, S. K. Seo, S. H. Kim, S. W. Lee, Thermal emissivity changes as a function of degree of flakes alignment on the graphite surfaces, J. Kor. Inst. Surf. Eng., 42 (2009) 95-101. https://doi.org/10.5695/JKISE.2009.42.2.095
  5. H. Yu, G. Xu, X. Shen, X. Yan, C. Shao, C. Hu, Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings, Progr. Org. Coating., 66 (2009) 161-166. https://doi.org/10.1016/j.porgcoat.2009.07.002
  6. W. Zhou, S. Qi, H. Li. S. Shao, Study on insulating thermal conductive BN/HDPE composites, Thermochim. Acta, 452 (2007) 36-42. https://doi.org/10.1016/j.tca.2006.10.018
  7. W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Thermal conductivity of boron nitride reinforced polyethylene composites, Mater. Res. Bull., 42 (2007) 1863-1873. https://doi.org/10.1016/j.materresbull.2006.11.047
  8. H. Miyagawa, M. J. Rich, L. T. Drzal, Thermophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers, Thermochim. Acta, 442 (2006) 67-73. https://doi.org/10.1016/j.tca.2006.01.016
  9. S. Bellayer, J. W. Gilman, S. S. Rahatekar, S. Bourbigot, X. Flambard, L. M. Hanssen, H. Guo, S. Kumar, Characterization of SWCNT and PAN/SWCNT films, Carbon, 45 (2007) 2417-2423. https://doi.org/10.1016/j.carbon.2007.06.057
  10. S. H. Hong, M. H. Kim, C. K. Hong, D. S. Jung, S. E. Shim, Encapsulation of multi-walled carbon nanotubes by poly(4-vinylpyridine) and its dispersion stability in various solvent media, Synth. Met., 158 (2008) 900-907. https://doi.org/10.1016/j.synthmet.2008.06.023
  11. S. Berber, Y. K. Kwon, D. Tomanek, Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett. 84 (2000) 4613-4616. https://doi.org/10.1103/PhysRevLett.84.4613
  12. S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, M. S. Jhon, Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization, Macromol. Rapid Commun., 24 (2003) 1070-1073. https://doi.org/10.1002/marc.200300089
  13. K. T. Lau, D. Hui, Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures, Carbon, 40 (2002) 1605-1606. https://doi.org/10.1016/S0008-6223(02)00157-4
  14. Y. S. Song, J. R. Youn, Influence of dispersion sates of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, 43 (2005) 1378-1385. https://doi.org/10.1016/j.carbon.2005.01.007
  15. Q. Chen, L. Dai, M. Gao, S. Huang, A. Mau, Plasma activation of carbon nanotubes for chemical modification, J. Phys. Chem. B, 105 (2001) 618-622. https://doi.org/10.1021/jp003385g
  16. W. Trabelsi, L. Dhouibi, E. Triki, M. G. S. Ferreira, M. F. Mountemor, An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes, Surf. Coat. Technol., 192 (2005) 284-290. https://doi.org/10.1016/j.surfcoat.2004.04.088
  17. M. L. Sham, J. K. Kim, Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments, Carbon, 44 (2006) 768-777. https://doi.org/10.1016/j.carbon.2005.09.013
  18. P. C. Ma, J. K. Kim, B. Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent, Carbon, 44 (2006) 3232-3238. https://doi.org/10.1016/j.carbon.2006.06.032
  19. J. S. Jang, J. W. Bae, S. H. Yoon, A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide-carbon nanotube composites, J. Mater. Chem. 13 (2003) 676-681. https://doi.org/10.1039/b212190e
  20. H. Miyagawa, M. J. Rich, L. T. Drzal, Thermophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers, Thermochim. Acta, 442 (2006) 67-73. https://doi.org/10.1016/j.tca.2006.01.016
  21. J. C. Grunlan, W. W. Gerberich, L. F. Francis, Lowering the percolation threshold in carbon black-filled polymer composites, Mat. Res. Soc. Symp. Proc., 576 (1999) 383-387.
  22. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9 (2007) 1276-1291. https://doi.org/10.1039/B613962K
  23. S. B. Lee, B. H. Jeong, J. W. Yi, W. O. Lee, M. K. Um, Quantitative dispersion evaluation of carbon nanotubes reinforced polymer nanocomposites, Polymer(Korea), 35 (2011) 60-65.
  24. J. E. Riggs, Z. Guo, D. L. Carroll, Y. P. Sun, Strong Luminescence of Solubilized Carbon Nanotubes, J. Am. Chem. Soc., 122 (2000) 5879-5880. https://doi.org/10.1021/ja9942282
  25. Y. Zhou, L. Lei, B. Yang, J. Li, J. Ren, Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites, Polymer Testing, 68 (2018) 34-38. https://doi.org/10.1016/j.polymertesting.2018.03.044