Browse > Article
http://dx.doi.org/10.5695/JKISE.2020.53.4.160

Fabrication and characterization of polymer-based carbon nanomaterial composites for thermal conductive adhesive application  

Lee, Byeong-Joo (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Yoon, Eun-Hye (Taeyang 3C)
Lee, Ae-Ri (Taeyang 3C)
Lee, Woo-Young (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Heo, Sung-Gyu (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Hwang, Jae-Sung (Taeyang 3C)
Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Publication Information
Journal of the Korean institute of surface engineering / v.53, no.4, 2020 , pp. 160-168 More about this Journal
Abstract
A polymer-based carbon nanomaterial composite was fabricated and characterized for the application of a thermal conductive adhesive. Low-dimensional carbon nanomaterials with excellent thermal conductivity such as carbon nanotube (CNT) and graphene were selected as a filler in the composite. Thermal, electrical and adhesive properties of the composite were investigated with respect to the morphology and content of the low-dimensional carbon nanomaterials. As a result, the composite-based adhesive fabricated by the loading of surface-treated MWCNTs of 0.4 wt% showed uniform dispersion, moderate adhesion and effective heat dissipation properties. Finally, it was confirmed through the thermal image analysis of LED module that the temperature reduction of 10℃ was achieved using the fabricated composite adhesive with MWCNT-6A. Expecially, heat dissipation performance of the optimized composite adhesive was evident at the hot spot in the module compared to other samples mixed with graphene or different MWCNT loading ratios.
Keywords
Polymer-based composites; Carbon nanomaterials; Filler; Thermal conductive adhesive; Heat dissipation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. J. McNamara, Y. Joshi, Z. M. Zhang, Thermal resistance of thermal conductive adhesive anchored carbon nanotubes interface material, Int. J. Therm. Sci., 96 (2015) 221-226.   DOI
2 K. C. Yung, H. Liem, H. S. Choy, W. K. Lun, Thermal performance of high brightness LED array package on PCB, Int. Commun. Heat Mass Transfer, 37 (2010) 1266-1272.   DOI
3 G. Sui, S. Jana, W. H. Zhong, M. A. Fuqua, C. A. Ulven, Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites, Acta Mater., 56 (2008) 2381-2388.   DOI
4 J. S. Roh, J. S. Ahn, B. J. Kim, H. Y. Jeon, S. K. Seo, S. H. Kim, S. W. Lee, Thermal emissivity changes as a function of degree of flakes alignment on the graphite surfaces, J. Kor. Inst. Surf. Eng., 42 (2009) 95-101.   DOI
5 H. Yu, G. Xu, X. Shen, X. Yan, C. Shao, C. Hu, Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings, Progr. Org. Coating., 66 (2009) 161-166.   DOI
6 S. Bellayer, J. W. Gilman, S. S. Rahatekar, S. Bourbigot, X. Flambard, L. M. Hanssen, H. Guo, S. Kumar, Characterization of SWCNT and PAN/SWCNT films, Carbon, 45 (2007) 2417-2423.   DOI
7 W. Zhou, S. Qi, H. Li. S. Shao, Study on insulating thermal conductive BN/HDPE composites, Thermochim. Acta, 452 (2007) 36-42.   DOI
8 W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Thermal conductivity of boron nitride reinforced polyethylene composites, Mater. Res. Bull., 42 (2007) 1863-1873.   DOI
9 H. Miyagawa, M. J. Rich, L. T. Drzal, Thermophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers, Thermochim. Acta, 442 (2006) 67-73.   DOI
10 S. H. Hong, M. H. Kim, C. K. Hong, D. S. Jung, S. E. Shim, Encapsulation of multi-walled carbon nanotubes by poly(4-vinylpyridine) and its dispersion stability in various solvent media, Synth. Met., 158 (2008) 900-907.   DOI
11 S. Berber, Y. K. Kwon, D. Tomanek, Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett. 84 (2000) 4613-4616.   DOI
12 Q. Chen, L. Dai, M. Gao, S. Huang, A. Mau, Plasma activation of carbon nanotubes for chemical modification, J. Phys. Chem. B, 105 (2001) 618-622.   DOI
13 S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, M. S. Jhon, Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization, Macromol. Rapid Commun., 24 (2003) 1070-1073.   DOI
14 K. T. Lau, D. Hui, Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures, Carbon, 40 (2002) 1605-1606.   DOI
15 Y. S. Song, J. R. Youn, Influence of dispersion sates of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, 43 (2005) 1378-1385.   DOI
16 J. S. Jang, J. W. Bae, S. H. Yoon, A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide-carbon nanotube composites, J. Mater. Chem. 13 (2003) 676-681.   DOI
17 W. Trabelsi, L. Dhouibi, E. Triki, M. G. S. Ferreira, M. F. Mountemor, An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes, Surf. Coat. Technol., 192 (2005) 284-290.   DOI
18 M. L. Sham, J. K. Kim, Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments, Carbon, 44 (2006) 768-777.   DOI
19 P. C. Ma, J. K. Kim, B. Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent, Carbon, 44 (2006) 3232-3238.   DOI
20 H. Miyagawa, M. J. Rich, L. T. Drzal, Thermophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers, Thermochim. Acta, 442 (2006) 67-73.   DOI
21 J. E. Riggs, Z. Guo, D. L. Carroll, Y. P. Sun, Strong Luminescence of Solubilized Carbon Nanotubes, J. Am. Chem. Soc., 122 (2000) 5879-5880.   DOI
22 J. C. Grunlan, W. W. Gerberich, L. F. Francis, Lowering the percolation threshold in carbon black-filled polymer composites, Mat. Res. Soc. Symp. Proc., 576 (1999) 383-387.
23 M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9 (2007) 1276-1291.   DOI
24 S. B. Lee, B. H. Jeong, J. W. Yi, W. O. Lee, M. K. Um, Quantitative dispersion evaluation of carbon nanotubes reinforced polymer nanocomposites, Polymer(Korea), 35 (2011) 60-65.
25 Y. Zhou, L. Lei, B. Yang, J. Li, J. Ren, Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites, Polymer Testing, 68 (2018) 34-38.   DOI