• Title/Summary/Keyword: carbon nano silicon

Search Result 77, Processing Time 0.03 seconds

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Integrated Circuit Design Based on Carbon Nanotube Field Effect Transistor

  • Kim, Yong-Bin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.175-188
    • /
    • 2011
  • As complementary metal-oxide semiconductor (CMOS) continues to scale down deeper into the nanoscale, various device non-idealities cause the I-V characteristics to be substantially different from well-tempered metal-oxide semiconductor field-effect transistors (MOSFETs). The last few years witnessed a dramatic increase in nanotechnology research, especially the nanoelectronics. These technologies vary in their maturity. Carbon nanotubes (CNTs) are at the forefront of these new materials because of the unique mechanical and electronic properties. CNTFET is the most promising technology to extend or complement traditional silicon technology due to three reasons: first, the operation principle and the device structure are similar to CMOS devices and it is possible to reuse the established CMOS design infrastructure. Second, it is also possible to reuse CMOS fabrication process. And the most important reason is that CNTFET has the best experimentally demonstrated device current carrying ability to date. This paper discusses and reviewsthe feasibility of the CNTFET's application at this point of time in integrated circuits design by investigating different types of circuit blocks considering the advantages that the CNTFETs offer.

An Accuracy Improvement Method for the Analysis of Process Variation Effect on CNTFET-based Circuit Performance (CNTFET 기반 회로 성능의 공정 편차 영향 분석을 위한 정확도 향상 방법)

  • Cho, Geunho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.420-426
    • /
    • 2018
  • In the near future, CNTFET(Carbon NanoTube Field Effect Transistor) is considered as one of the most promising candidate for the replacement of modern silicon-based transistors by utilizing the ballistic or near-ballistic transport capability of CNT(Carbon NanoTube). For the large-scale fabrication of high performance CNTFET, semiconducting CNTs have to be well-aligned with a fixed pitch and high densities in the each CNTFET. However, due to the immaturity of the CNTFET fabrication process, CNTs can be unevenly positioned in a CNTFET and existing HSPICE library file cannot support the circuit level evaluation of performance variation caused by the unevenly positioned CNTs. To evaluate the performance variation, linear programming methodology was suggested previously, but the errors can be made during the calculation of the current and the gate capacitance of a CNTFET. In this paper, the reasons causing errors will be discussed in detail and the new methodology to reduce the errors will be also suggested. Simulation results shows that the errors can be reduced from 7.096% to 3.15%.

Electrochemical Performances of Spherical Silicon/Carbon Anode Materials Prepared by Hydrothermal Synthesis (수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성)

  • Choi, Na Hyun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.326-332
    • /
    • 2021
  • In this study, a spherical carbon composite material containing nano-silicon was synthesized using hydrothermal synthesis, and coated with petroleum pitch to prepare an anode material to investigate the electrochemical characteristics. Hydrothermal synthesis was performed by varying molar concentration, and the pitch was coated using THF as an organic solvent to prepare a composite material. The physical properties of anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances were investigated by cycle, C-rate, cyclic voltammetry and electrochemical impedance tests in 1.0 M LiPF6 electrolyte (EC : DMC : EMC = 1 : 1 : 1 vol%). The pitch-coated silicon/carbon composite (Pitch@Si/C-1.5) with sucrose of 1.5 M showed a spherical shape. In addition, a high initial capacity of 1756 mAh/g, a capacity retention ratio of 82% after 50 cycles, and an excellent rate characteristic of 81% at 2 C/0.1 C were confirmed.

Diamond-like Carbon Protective Anti-reflection Coating for Solar Cell Application (태양전지 응용을 위한 DLC(Diamond-like Carbon) 반사방지막의 특성 분석)

  • Choi, Won-Seok;Jeon, Young-Sook;Kim, Kyung-Hae;Yi, Jun-Sin;Heo, Jin-Hee;Chung, Il-Sub;Hong, Byung-You
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1737-1739
    • /
    • 2004
  • Diamond-like carbon (DLC) films were prepared with RF-PECVD (Plasma Enhanced Chemical Vapor Deposition) method on coming glass and silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gases. We examined the effects of $CH_4$ to $H_2$ ratios on tribological and optical properties of the DLC films. The structure and surface morphology of the films were examined using Raman spectroscopy and atomic force microscopy (AFM). The hardness of the DLC film was measured with nano-indentor. The optical properties of DLC thin film were investigated by UV/VIS spectrometer and ellipsometry. And also, solar cells were fabricated using DLC as antireflection coating before and after coating DLC on silicon substrate and compared the efficiency.

  • PDF

Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane (SiC 필러 함량이 탄소 함유 Polysiloxane으로부터 제조된 고기공률 탄화규소 세라믹스의 미세조직과 꺾임강도에 미치는 영향)

  • Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.625-630
    • /
    • 2012
  • Highly porous silicon carbide (SiC) ceramics were fabricated from polysiloxane, SiC and carbon black fillers, AlN-$Y_2O_3$ additives, and poly (ether-co-octene) (PEOc) and expandable microsphere templates. Powder mixtures with a fixed PEOc content (30 wt%) and varying SiC filler contents from 0-21 wt% were compression-molded. During the pyrolysis process, the polysiloxane was converted to SiOC, the PEOc generated a considerable degree of interconnected porosity, and the expandable microspheres generated fine cells. The polysiloxane-derived SiOC and carbon black reacted and synthesized nano-sized SiC with a carbothermal reduction during a heat-treatment. Subsequent sintering of the compacts in a nitrogen atmosphere produced highly porous SiC ceramics with porosities ranging from 78 % to 82 % and a flexura lstrength of up to ~7 MPa.

The Improvement of the Ionization on Micro Mass Spectrometer using Carbon Nanotube Emitter (탄소나노튜브 방출원을 통한 초소형 질량분석기의 이온화 향상)

  • Song, S.H.;Han, Kyu-Sung;Hong, Nguyen Tuan;Lee, S.I.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1004-1009
    • /
    • 2009
  • Recently, mass spectrometers are widely used for in-situ chemical analysis. It has rapid response and high sensitivity. In this paper, we present the fabrication and test of a cold cathode emitter for micro mass spectrometer using CNTs(Carbon nano tubes). The CNTs have good mechanical, electrical and chemical characteristics. So they have a long life time and strong robustness. The micro mass spectrometer is composed of the glass substrate and the silicon substrate. The glass substrate is constructed by electrodes for TOF(Time-of-flight) which analyze an ion with mass to charge ratio as ion separator. The silicon substrate is highly doped wafer which is patterned for gate electrode and then 100 11m dry etching to grow the CNTs as the electron emitter. The CNTs are grown by HFCVD(Hot filament chemical vapor deposition) with sputtering the catalyst. We successfully attained to grow the CNTs and to test the characteristics.

Evaluation of Coated Layers of HTGR Nuclear Fuel Particle

  • Song, M.S.;Choi, Y.;Kim, B.G.;Lee, Y.W.;Lee, J.K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1047-1048
    • /
    • 2004
  • Simulation Coated layers of a nuclear fuel particle were evaluated by field emission scanning electron microscopy and nano-indentation method to give basic data to estimate 'Amoeba effect' and give an optimum fabrication condition and high quality control. Coated layers on the fuel kernel are in the order of buffer pyrolytic carbon, inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon layers, which average thicknesses are 95, 25, 30 and 28 ${\mu}m$, respectively. Their densities and hardnesses are 1.08, 1.15, 3.18, 1.82 $g/cm^3$ and 0.522, 0.874, 9.641, and 2.726 GPa, respectively. Comparing theoretical density of pyrolytic carbon of 2.22 $g/cm^3$, the relative amount of porosity in each layer is about 52% for buffer, 48% for inner PyC and 18% for outer PyC.

  • PDF

Photocurrent of CdSe nanocrystals on singlewalled carbon nanotube-field effect transistor

  • Jeong, Seung-Yol;Lim, Seung-Chu;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.40-40
    • /
    • 2010
  • CdSe nanocrystals (NCs) have been decorated on singlewalled carbon nanotubes (SWCNTs) by combining a method of chemically modified substrate along with gate-bias control. CdSe/ZnS core/shell quantum dots were negatively charged by adding mercaptoacetic acid (MAA). The silicon oxide substrate was decorated by octadecyltrichlorosilane (OTS) and converted to hydrophobic surface. The negatively charged CdSe NCs were adsorbed on the SWCNT surface by applying the negative gate bias. The selective adsorption of CdSe quantum dots on SWCNTs was confirmed by confocal laser scanning microscope. The measured photocurrent clearly demonstrates that CdSe NCs decorated SWCNT can be used for photodetector and solar cell that are operable over a wide range of wavelengths.

  • PDF

Characteristic of Nitrogen doped Diamond-Like Carbon film on the Silicon substrates (실리콘 기판에 증착된 질소도핑 DLC 박막의 특성)

  • Nguyen, Van Cao;Kim, Tae Hyeon;Kim, Hye Sung;Shin, Dong Chul;Kim, Tae Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.34-40
    • /
    • 2013
  • Various depositional conditions, such as substrate, pressure, deposition time, temperature of substrate, power and gas composition, have mainly been studied to attain DLC films using RF sputtering system up to the current. In this study, the $N_2/Ar/CH_4$ gas mixture factored on characteristics of DLC deposited film such as structure, hardness, electrical property were investigated. The concentration of the $N_2$ gas in the sputtering gas may be a significant effect on the growth rate of the doped films, because nitrogen ions react not only with the carbon atoms on the target but also with $C_xH_y$ ions in the plasma on the substrate surface. It was seen from this experimental that the resistance of deposited film is decreased, and the relative intensity ratio of D to G peak is increased as nitrogen content of film deposition is increased.