Browse > Article
http://dx.doi.org/10.4313/TEEM.2011.12.5.175

Integrated Circuit Design Based on Carbon Nanotube Field Effect Transistor  

Kim, Yong-Bin (Department of Electrical and Computer Engineering, Northeastern University)
Publication Information
Transactions on Electrical and Electronic Materials / v.12, no.5, 2011 , pp. 175-188 More about this Journal
Abstract
As complementary metal-oxide semiconductor (CMOS) continues to scale down deeper into the nanoscale, various device non-idealities cause the I-V characteristics to be substantially different from well-tempered metal-oxide semiconductor field-effect transistors (MOSFETs). The last few years witnessed a dramatic increase in nanotechnology research, especially the nanoelectronics. These technologies vary in their maturity. Carbon nanotubes (CNTs) are at the forefront of these new materials because of the unique mechanical and electronic properties. CNTFET is the most promising technology to extend or complement traditional silicon technology due to three reasons: first, the operation principle and the device structure are similar to CMOS devices and it is possible to reuse the established CMOS design infrastructure. Second, it is also possible to reuse CMOS fabrication process. And the most important reason is that CNTFET has the best experimentally demonstrated device current carrying ability to date. This paper discusses and reviewsthe feasibility of the CNTFET's application at this point of time in integrated circuits design by investigating different types of circuit blocks considering the advantages that the CNTFETs offer.
Keywords
Nano-technology; Complementary metaloxide semiconductorscaling; Integrated circuit; Carbon nanotube; Carbon nanotube field effect transistor; Very largescale integration; Nano-electronics;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 G. Cho, Y. B. Kim, and F. Lombardi, IEEE Trans Dev Mat Rel 11, 263 (2011) [http://dx.doi.org/10.1109/tdmr.2011.2123896].   DOI   ScienceOn
2 E. Seevinck, F. J. List, and J. Lohstroh, IEEE J Solid-State Circuits SC-22, 748 (1987) [http://dx.doi.org/10.1109/JSSC.1987.1052809].
3 E. Grossar, M. Stucchi, K. Maex, and W. Dehaene, IEEE J Solid- State Circuits 41, 2577 (2006) [http://dx.doi.org/10.1109/jssc.2006.883344].   DOI   ScienceOn
4 S. Lin, Y. B. Kim, and F. Lombardi, IEEE Trans Nanotechnol 9, 30 (2010) [http://dx.doi.org/10.1109/tnano.2009.2025128].   DOI   ScienceOn
5 K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Proc IEEE 91, 305 (2003) [http://dx.doi.org/10.1109/jproc.2002.808156].   DOI   ScienceOn
6 B. C. Paul, S. Fujita, M. Okajima, T. H. Lee, H. S. P. Wong, and Y. Nishi, IEEE Trans Electron Devices 54, 2369 (2007) [http://dx.doi.org/10.1109/ted.2007.901882].   DOI   ScienceOn
7 D. A. Rich, IEEE Trans Comput C-35, 99 (1986) [http://dx.doi.org/10.1109/TC.1986.1676727].   DOI   ScienceOn
8 Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, and A. Yoshida, IEEE J Solid-State Circuits SC-21, 162 (1986) [http://dx.doi.org/10.1109/JSSC.1986.1052493].
9 S. Lin, Y. B. Kim, and F. Lombardi, IEEE Trans Nanotechnol 10, 217 (2011) [http://dx.doi.org/10.1109/TNANO.2009.2036845].   DOI   ScienceOn
10 J. Appenzeller, Proc IEEE 96, 201 (2008) [http://dx.doi.org/10.1109/jproc.2007.911051].   DOI   ScienceOn
11 J. Deng and H. S. P. Wong, IEEE Trans Electron Devices 54, 3186 (2007) [http://dx.doi.org/10.1109/ted.2007.909030].   DOI   ScienceOn
12 A. P. Dhande and V. T. Ingole, Proceedings of the 3rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications (Tunisia 2005 Mar. 17-21).
13 A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001) [http://dx.doi.org/10.1126/science.1065824].   DOI   ScienceOn
14 S. Lin, Y. B. Kim, F. Lombardi, and Y. J. Lee, Proceedings of the International SoC Design Conference (Busan, Korea 2008 Nov. 24-25) p. I168. [http://dx.doi.org/10.1109/SOCDC.2008.4815599].
15 Nanoscale Integration and Modeling (NIMO) Group (Nov. 15, 2008). Berkeley Predictive Technology Model. Retrieved from http://ptm.asu.edu/.
16 Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, J. Phys. Chem. B 105, 11424 (2001) [http://dx.doi.org/10.1021/jp012085b].   DOI   ScienceOn
17 K. K. Kim and Y. B. Kim, IEEE Trans Very Large Scale Integr (VLSI) Syst 17, 517 (2009) [http://dx.doi.org/10.1109/TVLSI.2008.2007958].   DOI   ScienceOn
18 Y. Ohno, S. Kishimoto, T. Mizutani, T. Okazaki, and H. Shinohara, Appl. Phys. Lett. 84, 1368 (2004) [http://dx.doi.org/10.1063/1.1650554].   DOI   ScienceOn
19 C. Geunho, F. Lombardi, and K. Yong-Bin, Proceedings of the IEEE 25th International Symposium on Defect and Fault Tolerance in VLSI Systems (Kyoto, Japan 2010 Oct. 6-8) p. 289. [http://dx.doi.org/10.1109/DFT.2010.42].
20 J. Guo, A. Javey, H. Dai, S. Datta, and M. Lundstrom, eprint arXiv:cond-mat/0309039 (2003).
21 A. Raychowdhury and K. Roy, IEEE Trans Nanotechnol 4, 168 (2005) [http://dx.doi.org/10.1109/tnano.2004.842068].   DOI   ScienceOn
22 S. Lin, Y. B. Kim, and F. Lombardi, Proceedings of the 52nd IEEE International Midwest Symposium on Circuits and Systems (Cancun, Mexico 2009 Aug. 2-5) p. 435. [http://dx.doi.org/10.1109/MWSCAS.2009.5236063].
23 T. P. Haraszti, CMOS Memory Circuits (Kluwer Academic Publishers, Boston, 2000).
24 F. Ricci, L. T. Clark, T. Beatty, W. Yu, A. Bashmakov, S. Demmons, E. Fox, J. Miller, M. Biyani, and J. Haigh, Symposium on VLSI Circuits (Kyoto, Japan 2005 Jun. 16-18) p. 12. [http://dx.doi.org/10.1109/VLSIC.2005.1469322].
25 A. P. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High- Performance Microprocessor Circuits (IEEE Press, New York, 2001) p. 290-296.
26 K. K. Kim and Y. B. Kim, IEEE International Symposium on Circuits and Systems (New Orleans, LA 2007 May 27-30) p. 1161. [http://dx.doi.org/10.1109/ISCAS.2007.378256].
27 M. Mukaidono, IEEE Trans Comput C-35, 179 (1986) [http://dx.doi.org/10.1109/TC.1986.1676738].   DOI   ScienceOn
28 A. Heung and H. T. Mouftah, IEEE J Solid-State Circuits SC-20, 609 (1984) [http://dx.doi.org/10.1109/JSSC.1985.1052354].
29 T. Araki, H. Tatsumi, M. Mukaidono, and F. Yamamoto, Proceedings of the 28th International Symposium on Multiple-Valued Logic (Fukuoka, Japan 1998 May 27-29) p. 289. [http://dx.doi.org/10.1109/ISMVL.1998.679472].
30 P. C. Balla and A. Antoniou, IEEE J Solid-State Circuits SC-19, 739 (1984) [http://dx.doi.org/10.1109/JSSC.1984.1052216].
31 R. C. Baumann, IEEE Trans Dev Mat Rel 1, 17 (2001) [http://dx.doi.org/10.1109/7298.946456].
32 M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein, IEEE International Electron Devices Meeting (Washington, DC 2005 Dec. 5) p. 9. [http://dx.doi.org/10.1109/IEDM.2005.1609253].
33 Stanford University Nanoelectronics Group. Stanford University CNFET Model. Retrieved from http://nano.stanford.edu/model.php?id=23.
34 Y. M. Lin, J. Appenzeller, J. Knoch, and P. Avouris, IEEE Trans Nanotechnol 4, 481 (2005) [http://dx.doi.org/10.1109/tnano.2005.851427].   DOI   ScienceOn
35 A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, IEEE Trans Electron Devices 50, 1853 (2003) [http://dx.doi.org/10.1109/ted.2003.815366].   DOI   ScienceOn
36 A. Akturk, G. Pennington, N. Goldsman, and A. Wickenden, IEEE Trans Nanotechnol 6, 469 (2007) [http://dx.doi.org/10.1109/tnano.2007.896968].   DOI   ScienceOn
37 H. Hashempour and F. Lombardi, IEEE Des Test Comput 25, 178 (2008) [http://dx.doi.org/10.1109/mdt.2008.34].   DOI   ScienceOn
38 J. Deng and H. S. P. Wong, IEEE Trans Electron Devices 54, 3195 (2007) [http://dx.doi.org/10.1109/ted.2007.909043].   DOI   ScienceOn